Spaces:
Runtime error
Runtime error
File size: 16,542 Bytes
7fe98ab d61a0bc d8bb216 6c12bfc 925790f 6c12bfc d8bb216 6c12bfc d8bb216 d61a0bc 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d191aca 3d79b08 d8bb216 c4fd703 626b672 c4fd703 d8bb216 626b672 d8bb216 515245d 626b672 d8bb216 c4fd703 d8bb216 626b672 7fe98ab 6c12bfc d8bb216 c4fd703 d8bb216 6c12bfc d8bb216 626b672 6c12bfc 626b672 d8bb216 626b672 d8bb216 c942f44 626b672 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d191aca b972f40 de0b990 4d68dfd 3d79b08 6c12bfc 4d68dfd 925790f 4d68dfd 925790f 4d68dfd 925790f 4d68dfd 925790f 4d68dfd 925790f 626b672 d8bb216 6c12bfc 925790f 3d79b08 4d68dfd 3d79b08 d8bb216 925790f 6c12bfc d8bb216 6c12bfc 626b672 4d68dfd 3d79b08 626b672 3d79b08 d8bb216 626b672 d8bb216 626b672 6c12bfc d8bb216 626b672 d8bb216 925790f d8bb216 4d68dfd d8bb216 626b672 d8bb216 925790f 626b672 3d79b08 de0b990 626b672 cbdec18 925790f cbdec18 925790f b4e4e06 cbdec18 925790f b4e4e06 cbdec18 3d79b08 cbdec18 b4e4e06 925790f b4e4e06 3d79b08 cbdec18 3d79b08 cbdec18 626b672 925790f d8bb216 3d79b08 d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc 515245d 925790f 515245d 6c12bfc d8bb216 925790f d8bb216 626b672 d8bb216 626b672 925790f d8bb216 925790f d8bb216 925790f 515245d 826eb28 7fe98ab 925790f 4d68dfd 925790f 6243da9 925790f d8bb216 925790f d8bb216 925790f 515245d 925790f 515245d 925790f 515245d 925790f d8bb216 626b672 d8bb216 515245d 925790f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import torch
import numpy as np
import random
import os
import yaml
import argparse
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
FPS = 30.0
# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
# 创建输出目录
output_dir = "output"
Path(output_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model path: {distilled_model_actual_path}")
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=SPATIAL_UPSCALER_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created on CPU.")
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
device="cpu"
)
print("Latent upsampler created on CPU.")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
# --- Helper function for dimension calculation ---
MIN_DIM_SLIDER = 256
TARGET_FIXED_SIDE = 768
def calculate_new_dimensions(orig_w, orig_h):
"""
Calculates new dimensions for height and width sliders based on original media dimensions.
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally,
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
"""
if orig_w == 0 or orig_h == 0:
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
if orig_w >= orig_h:
new_h = TARGET_FIXED_SIDE
aspect_ratio = orig_w / orig_h
new_w_ideal = new_h * aspect_ratio
new_w = round(new_w_ideal / 32) * 32
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
else:
new_w = TARGET_FIXED_SIDE
aspect_ratio = orig_h / orig_w
new_h_ideal = new_w * aspect_ratio
new_h = round(new_h_ideal / 32) * 32
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
return int(new_h), int(new_w)
def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
input_image_filepath=None, input_video_filepath=None,
height_ui=512, width_ui=704, mode="text-to-video",
duration_ui=2.0, ui_frames_to_use=9,
seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
if ui_guidance_scale is None:
ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0)
target_frames_ideal = duration_ui * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1:
target_frames_rounded = 1
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
actual_num_frames = max(9, actual_num_frames)
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
actual_height = int(height_ui)
actual_width = int(width_ui)
height_padded = ((actual_height - 1) // 32 + 1) * 32
width_padded = ((actual_width - 1) // 32 + 1) * 32
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": num_frames_padded,
"frame_rate": int(FPS),
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt",
"conditioning_items": None,
"media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
if mode == "image-to-video" and input_image_filepath:
try:
media_tensor = load_image_to_tensor_with_resize_and_crop(
input_image_filepath, actual_height, actual_width
)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
except Exception as e:
print(f"Error loading image {input_image_filepath}: {e}")
raise RuntimeError(f"Could not load image: {e}")
elif mode == "video-to-video" and input_video_filepath:
try:
call_kwargs["media_items"] = load_media_file(
media_path=input_video_filepath,
height=actual_height,
width=actual_width,
max_frames=int(ui_frames_to_use),
padding=padding_values
).to(target_inference_device)
except Exception as e:
print(f"Error loading video {input_video_filepath}: {e}")
raise RuntimeError(f"Could not load video: {e}")
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
active_latent_upsampler = None
if improve_texture_flag and latent_upsampler_instance:
active_latent_upsampler = latent_upsampler_instance
result_images_tensor = None
if improve_texture_flag:
if not active_latent_upsampler:
raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
first_pass_args.pop("num_inference_steps", None)
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
second_pass_args.pop("num_inference_steps", None)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update({
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
})
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
single_pass_call_kwargs = call_kwargs.copy()
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
single_pass_call_kwargs.pop("num_inference_steps", None)
single_pass_call_kwargs.pop("first_pass", None)
single_pass_call_kwargs.pop("second_pass", None)
single_pass_call_kwargs.pop("downscale_factor", None)
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
if result_images_tensor is None:
raise RuntimeError("Generation failed.")
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_images_tensor = result_images_tensor[
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
]
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np, 0, 1)
video_np = (video_np * 255).astype(np.uint8)
# 生成带时间戳的文件名并保存到output目录
timestamp = random.randint(10000, 99999)
output_video_path = os.path.join(output_dir, f"output_{timestamp}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
video_writer.append_data(video_np[frame_idx])
if frame_idx % 10 == 0:
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]}")
except Exception as e:
print(f"Error saving video with macro_block_size=1: {e}")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
video_writer.append_data(video_np[frame_idx])
if frame_idx % 10 == 0:
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]} (fallback)")
except Exception as e2:
print(f"Fallback video saving error: {e2}")
raise RuntimeError(f"Failed to save video: {e2}")
print(f"Video saved successfully to: {output_video_path}")
return output_video_path, seed_ui
def main():
parser = argparse.ArgumentParser(description="LTX Video Generation from Command Line")
parser.add_argument("--prompt", required=True, help="Text prompt for video generation")
parser.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted",
help="Negative prompt")
parser.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"],
default="text-to-video", help="Generation mode")
parser.add_argument("--input-image", help="Input image path for image-to-video mode")
parser.add_argument("--input-video", help="Input video path for video-to-video mode")
parser.add_argument("--duration", type=float, default=2.0, help="Video duration in seconds (0.3-8.5)")
parser.add_argument("--height", type=int, default=512, help="Video height (must be divisible by 32)")
parser.add_argument("--width", type=int, default=704, help="Video width (must be divisible by 32)")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--randomize-seed", action="store_true", help="Use random seed")
parser.add_argument("--guidance-scale", type=float, help="Guidance scale for generation")
parser.add_argument("--no-improve-texture", action="store_true", help="Disable texture improvement (faster)")
parser.add_argument("--frames-to-use", type=int, default=9, help="Frames to use from input video (for video-to-video)")
args = parser.parse_args()
# Validate parameters
if args.mode == "image-to-video" and not args.input_image:
print("Error: --input-image is required for image-to-video mode")
return
if args.mode == "video-to-video" and not args.input_video:
print("Error: --input-video is required for video-to-video mode")
return
# Ensure dimensions are divisible by 32
args.height = ((args.height - 1) // 32 + 1) * 32
args.width = ((args.width - 1) // 32 + 1) * 32
print(f"Starting video generation...")
print(f"Prompt: {args.prompt}")
print(f"Mode: {args.mode}")
print(f"Duration: {args.duration}s")
print(f"Resolution: {args.width}x{args.height}")
print(f"Output directory: {os.path.abspath(output_dir)}")
try:
output_path, used_seed = generate(
prompt=args.prompt,
negative_prompt=args.negative_prompt,
input_image_filepath=args.input_image,
input_video_filepath=args.input_video,
height_ui=args.height,
width_ui=args.width,
mode=args.mode,
duration_ui=args.duration,
ui_frames_to_use=args.frames_to_use,
seed_ui=args.seed,
randomize_seed=args.randomize_seed,
ui_guidance_scale=args.guidance_scale,
improve_texture_flag=not args.no_improve_texture
)
print(f"\n✅ Video generation completed!")
print(f"📁 Output saved to: {output_path}")
print(f"🎲 Used seed: {used_seed}")
print(f"📂 Full path: {os.path.abspath(output_path)}")
except Exception as e:
print(f"❌ Error during generation: {e}")
raise
if __name__ == "__main__":
if os.path.exists(models_dir) and os.path.isdir(models_dir):
print(f"Model directory: {Path(models_dir).resolve()}")
print(f"Output directory: {Path(output_dir).resolve()}")
main()
|