File size: 24,155 Bytes
cc137de
 
 
 
 
 
989221a
cc137de
 
989221a
cc137de
 
 
989221a
cc137de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989221a
cc137de
 
989221a
cc137de
989221a
cc137de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989221a
cc137de
 
 
 
 
989221a
cc137de
 
989221a
cc137de
 
 
 
989221a
cc137de
 
 
 
 
989221a
cc137de
 
 
 
 
 
989221a
cc137de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989221a
cc137de
 
 
989221a
cc137de
 
 
 
989221a
cc137de
 
 
 
 
 
989221a
cc137de
 
 
 
 
 
989221a
cc137de
 
 
989221a
cc137de
 
 
989221a
cc137de
 
 
 
 
 
 
 
989221a
cc137de
 
989221a
cc137de
 
 
 
 
 
 
 
989221a
cc137de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989221a
cc137de
 
 
989221a
cc137de
 
 
 
 
989221a
cc137de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# ==============================================================================
# 统一入口和依赖项
# ==============================================================================
import torch
import numpy as np
import random
import os
import yaml
import argparse
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil

# 监听模式所需的依赖项
import asyncio
import websockets
import subprocess
import json
import logging
import sys
import urllib.parse
import requests

from inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    get_device,
    calculate_padding,
    load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

# ==============================================================================
# 日志配置
# ==============================================================================
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# ==============================================================================
# 监听模式的函数 (原 remote_client.py)
# ==============================================================================

# 全局变量,用于在监听模式下共享状态
global_websocket = None
global_machine_id = None
global_card_id = None
global_machine_secret = None
global_server_url = None

async def upload_file_to_server(file_path, card_id, machine_secret, machine_id):
    """将文件上传到服务器的指定端点"""
    try:
        if not os.path.exists(file_path):
            logger.error(f"[Uploader] File not found: {file_path}")
            return False

        upload_url = f"{global_server_url}/terminal/{card_id}/machine-upload?secret={urllib.parse.quote(machine_secret)}"
        files = {'file': (os.path.basename(file_path), open(file_path, 'rb'), 'application/octet-stream')}
        data = {'machine_id': machine_id}

        logger.info(f"[Uploader] Uploading {os.path.basename(file_path)} to {upload_url}...")
        response = requests.post(upload_url, files=files, data=data, timeout=120)
        
        if response.status_code == 200:
            result = response.json()
            if result and result.get("success"):
                logger.info(f"[Uploader] Upload successful: {file_path}")
                return True
            else:
                logger.error(f"[Uploader] Upload failed: {result.get('error', 'Unknown error')}")
                return False
        else:
            logger.error(f"[Uploader] Upload failed with status code {response.status_code}: {response.text}")
            return False
            
    except Exception as e:
        logger.error(f"[Uploader] An exception occurred during upload: {e}")
        return False

async def watch_directory_for_uploads(dir_to_watch, card_id, secret, get_machine_id_func):
    """
    监视指定目录中的新文件,并自动上传。
    """
    processed_files = set()
    logger.info(f"[Watcher] Starting to watch directory: {dir_to_watch}")
    
    # 初始扫描,将已存在的文件视为已处理
    if os.path.isdir(dir_to_watch):
        processed_files.update(os.listdir(dir_to_watch))
        logger.info(f"[Watcher] Initial scan: {len(processed_files)} existing files ignored.")

    while True:
        await asyncio.sleep(5) # 每5秒检查一次
        try:
            if not os.path.isdir(dir_to_watch):
                continue

            current_files = set(os.listdir(dir_to_watch))
            new_files = current_files - processed_files
            
            if new_files:
                machine_id = get_machine_id_func()
                if not machine_id:
                    logger.warning("[Watcher] Machine ID not available, skipping upload cycle.")
                    continue

                logger.info(f"[Watcher] Detected {len(new_files)} new file(s): {', '.join(new_files)}")
                for filename in new_files:
                    file_path = os.path.join(dir_to_watch, filename)
                    # 等待文件写入完成 (简单检查)
                    await asyncio.sleep(2) 
                    
                    success = await upload_file_to_server(file_path, card_id, secret, machine_id)
                    if success:
                        logger.info(f"[Watcher] Successfully uploaded {filename}. Marking as processed.")
                        processed_files.add(filename)
                    else:
                        logger.warning(f"[Watcher] Failed to upload {filename}. Will retry on next cycle.")

            # 同步已处理列表,移除已删除的文件
            processed_files.intersection_update(current_files)

        except Exception as e:
            logger.error(f"[Watcher] Error in file watching loop: {e}")


async def start_listener_mode(card_id, machine_secret, watch_dir):
    """
    启动监听模式的主函数。
    """
    global global_websocket, global_machine_id, global_card_id, global_machine_secret, global_server_url

    global_card_id = card_id
    global_machine_secret = machine_secret

    server_hostname = "remote-terminal-worker.nianxi4563.workers.dev" # 或者您的服务器域名
    global_server_url = f"https://{server_hostname}"
    encoded_secret = urllib.parse.quote(machine_secret)
    uri = f"wss://{server_hostname}/terminal/{card_id}?secret={encoded_secret}"

    # 启动文件监视器
    def get_machine_id(): return global_machine_id
    watcher_task = asyncio.create_task(watch_directory_for_uploads(watch_dir, card_id, machine_secret, get_machine_id))

    while True: # 自动重连循环
        try:
            logger.info(f"[Listener] Attempting to connect to {uri}")
            async with websockets.connect(uri, ping_interval=20, ping_timeout=60) as websocket:
                global_websocket = websocket
                logger.info("[Listener] Connected to WebSocket server.")

                # 循环以获取 machine_id
                while global_machine_id is None:
                    try:
                        response = await asyncio.wait_for(websocket.recv(), timeout=10.0)
                        data = json.loads(response)
                        if data.get("type") == "connected" and "machine_id" in data:
                            global_machine_id = data["machine_id"]
                            logger.info(f"[Listener] Assigned machine ID: {global_machine_id}")
                            break
                    except asyncio.TimeoutError:
                        logger.debug("[Listener] Waiting for machine ID...")
                    except Exception as e:
                        logger.error(f"[Listener] Error receiving machine ID: {e}")
                        await asyncio.sleep(5) # 等待后重试
                        break # break inner loop to reconnect

                if not global_machine_id:
                    continue # continue outer loop to reconnect

                # 主消息处理循环
                while True:
                    message = await websocket.recv()
                    data = json.loads(message)
                    logger.debug(f"[Listener] Received message: {data}")

                    if data.get("type") == "command":
                        command = data["command"]
                        logger.info(f"[Listener] Received command: {command}")
                        
                        # 使用 subprocess 在新进程中执行命令
                        # 这使得监听器可以继续工作,而推理在后台运行
                        try:
                            # 将命令包装在 `python app.py ...` 中
                            full_command = f"python app.py {command}"
                            logger.info(f"Executing subprocess: {full_command}")
                            subprocess.run(full_command, shell=True, check=True)
                            logger.info("Subprocess finished successfully.")
                            # 结果文件将由 watcher 自动上传
                        except subprocess.CalledProcessError as e:
                            logger.error(f"Command execution failed with return code {e.returncode}")
                            error_output = e.stderr if e.stderr else e.stdout
                            if global_websocket:
                                await global_websocket.send(json.dumps({
                                    "type": "error", "data": f"Command failed: {error_output}", "machine_id": global_machine_id
                                }))
                        except Exception as e:
                            logger.error(f"Failed to run command: {e}")

        except websockets.exceptions.ConnectionClosed as e:
            logger.warning(f"[Listener] WebSocket closed: code={e.code}, reason={e.reason}. Reconnecting in 10 seconds...")
        except Exception as e:
            logger.error(f"[Listener] Connection failed: {e}. Reconnecting in 10 seconds...")
        
        global_websocket = None
        global_machine_id = None
        await asyncio.sleep(10)


# ==============================================================================
# 推理模式的函数 (原 app.py)
# ==============================================================================
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
    PIPELINE_CONFIG_YAML = yaml.safe_load(file)

LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
FPS = 30.0 

# 全局变量以缓存加载的模型
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
output_dir = "output" # 所有模式共用的输出目录
Path(output_dir).mkdir(parents=True, exist_ok=True)

def initialize_models():
    """加载并初始化所有AI模型(如果尚未加载)。"""
    global pipeline_instance, latent_upsampler_instance

    if pipeline_instance is not None:
        logger.info("Models already initialized.")
        return

    logger.info("Initializing models for the first time...")
    logger.info("Downloading models (if not present)...")
    distilled_model_actual_path = hf_hub_download(
        repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False
    )
    PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
    logger.info(f"Distilled model path: {distilled_model_actual_path}")

    SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
    spatial_upscaler_actual_path = hf_hub_download(
        repo_id=LTX_REPO, filename=SPATIAL_UPSCALER_FILENAME, local_dir=models_dir, local_dir_use_symlinks=False
    )
    PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
    logger.info(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")

    logger.info("Creating LTX Video pipeline on CPU...")
    pipeline_instance = create_ltx_video_pipeline(
        ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
        precision=PIPELINE_CONFIG_YAML["precision"],
        text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
        sampler=PIPELINE_CONFIG_YAML["sampler"],
        device="cpu",
        enhance_prompt=False,
        prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
        prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
    )
    logger.info("LTX Video pipeline created on CPU.")

    if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
        logger.info("Creating latent upsampler on CPU...")
        latent_upsampler_instance = create_latent_upsampler(
            PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], device="cpu"
        )
        logger.info("Latent upsampler created on CPU.")

    target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"
    logger.info(f"Moving models to target inference device: {target_inference_device}")
    pipeline_instance.to(target_inference_device)
    if latent_upsampler_instance: 
        latent_upsampler_instance.to(target_inference_device)
    logger.info("Model initialization complete.")


def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted", 
             input_image_filepath=None, input_video_filepath=None,
             height_ui=512, width_ui=704, mode="text-to-video",
             duration_ui=2.0, ui_frames_to_use=9,
             seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):

    # 确保模型已加载
    initialize_models()
    
    target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"

    if randomize_seed:
        seed_ui = random.randint(0, 2**32 - 1)
    seed_everething(int(seed_ui))
    
    if ui_guidance_scale is None:
        ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0)
    
    target_frames_ideal = duration_ui * FPS
    target_frames_rounded = round(target_frames_ideal)
    if target_frames_rounded < 1: 
        target_frames_rounded = 1
    
    n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
    actual_num_frames = int(n_val * 8 + 1)

    actual_num_frames = max(9, actual_num_frames)
    actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
    
    actual_height = int(height_ui)
    actual_width = int(width_ui)

    height_padded = ((actual_height - 1) // 32 + 1) * 32
    width_padded = ((actual_width - 1) // 32 + 1) * 32
    num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
    
    padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)

    call_kwargs = {
        "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
        "num_frames": num_frames_padded, "frame_rate": int(FPS), 
        "generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
        "output_type": "pt", "conditioning_items": None, "media_items": None,
        "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
        "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15,
        "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
        "offload_to_cpu": False, "enhance_prompt": False,
    }

    stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
    if stg_mode_str.lower() in ["stg_av", "attention_values"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
    elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
    elif stg_mode_str.lower() in ["stg_r", "residual"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
    elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
    else:
        raise ValueError(f"Invalid stg_mode: {stg_mode_str}")

    if mode == "image-to-video" and input_image_filepath:
        try:
            media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
            media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
            call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
        except Exception as e:
            logger.error(f"Error loading image {input_image_filepath}: {e}")
            raise RuntimeError(f"Could not load image: {e}")
    elif mode == "video-to-video" and input_video_filepath:
        try:
            call_kwargs["media_items"] = load_media_file(
                media_path=input_video_filepath, height=actual_height, width=actual_width,
                max_frames=int(ui_frames_to_use), padding=padding_values
            ).to(target_inference_device)
        except Exception as e:
            logger.error(f"Error loading video {input_video_filepath}: {e}")
            raise RuntimeError(f"Could not load video: {e}")

    active_latent_upsampler = latent_upsampler_instance if improve_texture_flag and latent_upsampler_instance else None
    result_images_tensor = None

    if improve_texture_flag:
        if not active_latent_upsampler:
            raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected.")
        
        multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
        first_pass_args = {**PIPELINE_CONFIG_YAML.get("first_pass", {}), "guidance_scale": float(ui_guidance_scale)}
        second_pass_args = {**PIPELINE_CONFIG_YAML.get("second_pass", {}), "guidance_scale": float(ui_guidance_scale)}
        
        multi_scale_call_kwargs = {
            **call_kwargs, "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
            "first_pass": first_pass_args, "second_pass": second_pass_args
        }
        
        logger.info(f"Calling multi-scale pipeline on {target_inference_device}")
        result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
    else:
        single_pass_call_kwargs = {**call_kwargs, **PIPELINE_CONFIG_YAML.get("first_pass", {}), "guidance_scale": float(ui_guidance_scale)}
        logger.info(f"Calling base pipeline on {target_inference_device}")
        result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images

    if result_images_tensor is None:
        raise RuntimeError("Generation failed, result tensor is None.")

    pad_left, pad_right, pad_top, pad_bottom = padding_values
    slice_h_end = -pad_bottom if pad_bottom > 0 else None
    slice_w_end = -pad_right if pad_right > 0 else None
    
    result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]

    video_np = (result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).clip(0, 255).astype(np.uint8)
    
    # 使用随机数确保文件名几乎不重复
    timestamp = random.randint(10000, 99999)
    output_video_path = os.path.join(output_dir, f"output_{timestamp}_{seed_ui}.mp4")
    
    try:
        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as writer:
            for frame in video_np:
                writer.append_data(frame)
    except Exception:
        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264') as writer:
            for frame in video_np:
                writer.append_data(frame)
    
    logger.info(f"Video saved successfully to: {output_video_path}")
    return output_video_path, seed_ui

def run_inference(args):
    """处理命令行参数并运行AI推理。"""
    logger.info(f"Starting single-run inference...")
    logger.info(f"Prompt: {args.prompt}")
    logger.info(f"Mode: {args.mode}")
    logger.info(f"Duration: {args.duration}s")
    logger.info(f"Resolution: {args.width}x{args.height}")
    logger.info(f"Output directory: {os.path.abspath(output_dir)}")
    
    try:
        output_path, used_seed = generate(
            prompt=args.prompt, negative_prompt=args.negative_prompt,
            input_image_filepath=args.input_image, input_video_filepath=args.input_video,
            height_ui=args.height, width_ui=args.width, mode=args.mode,
            duration_ui=args.duration, ui_frames_to_use=args.frames_to_use,
            seed_ui=args.seed, randomize_seed=args.randomize_seed,
            ui_guidance_scale=args.guidance_scale, improve_texture_flag=not args.no_improve_texture
        )
        logger.info(f"\n✅ Video generation completed!")
        logger.info(f"📁 Output saved to: {output_path}")
        logger.info(f"🎲 Used seed: {used_seed}")
        
    except Exception as e:
        logger.error(f"❌ Error during generation: {e}", exc_info=True)
        sys.exit(1)


# ==============================================================================
# 主入口和参数解析
# ==============================================================================
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="LTX Video Generation and Server Client")
    
    # --- 模式选择 ---
    group = parser.add_argument_group('运行模式')
    group.add_argument("--listen", action="store_true", help="以监听模式运行,连接到服务器等待指令。")
    
    # --- 监听模式参数 ---
    listener_group = parser.add_argument_group('监听模式参数 (需配合 --listen)')
    listener_group.add_argument("--card-id", help="用于向服务器认证的Card ID。")
    listener_group.add_argument("--secret", help="用于向服务器认证的Machine Secret。")
    listener_group.add_argument("--watch-dir", default=output_dir, help=f"监听新文件并自动上传的目录 (默认: {output_dir})")

    # --- 推理模式参数 ---
    inference_group = parser.add_argument_group('推理模式参数 (默认模式)')
    inference_group.add_argument("--prompt", help="用于视频生成的文本提示。")
    inference_group.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted", help="负面提示。")
    inference_group.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"], default="text-to-video", help="生成模式。")
    inference_group.add_argument("--input-image", help="输入图像路径 (用于 image-to-video 模式)。")
    inference_group.add_argument("--input-video", help="输入视频路径 (用于 video-to-video 模式)。")
    inference_group.add_argument("--duration", type=float, default=2.0, help="视频时长 (秒, 0.3-8.5)。")
    inference_group.add_argument("--height", type=int, default=512, help="视频高度 (将被调整为32的倍数)。")
    inference_group.add_argument("--width", type=int, default=704, help="视频宽度 (将被调整为32的倍数)。")
    inference_group.add_argument("--seed", type=int, default=42, help="随机种子。")
    inference_group.add_argument("--randomize-seed", action="store_true", help="使用一个随机的种子。")
    inference_group.add_argument("--guidance-scale", type=float, help="引导比例。")
    inference_group.add_argument("--no-improve-texture", action="store_true", help="禁用纹理增强 (更快,但质量可能较低)。")
    inference_group.add_argument("--frames-to-use", type=int, default=9, help="从输入视频中使用多少帧 (用于 video-to-video)。")

    args = parser.parse_args()

    # 根据模式分发任务
    if args.listen:
        if not args.card_id or not args.secret:
            parser.error("--card-id 和 --secret 是 --listen 模式的必需参数。")
        logger.info(f"启动监听模式... Card ID: {args.card_id}, Watch Dir: {args.watch_dir}")
        try:
            asyncio.run(start_listener_mode(args.card_id, args.secret, args.watch_dir))
        except KeyboardInterrupt:
            logger.info("监听模式已停止。")
    else:
        if not args.prompt:
            parser.error("--prompt 是推理模式的必需参数。")
        
        # 确保尺寸是32的倍数
        args.height = ((args.height - 1) // 32 + 1) * 32
        args.width = ((args.width - 1) // 32 + 1) * 32
        
        run_inference(args)