Spaces:
Runtime error
Runtime error
File size: 24,155 Bytes
cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de 989221a cc137de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
# ==============================================================================
# 统一入口和依赖项
# ==============================================================================
import torch
import numpy as np
import random
import os
import yaml
import argparse
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
# 监听模式所需的依赖项
import asyncio
import websockets
import subprocess
import json
import logging
import sys
import urllib.parse
import requests
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
# ==============================================================================
# 日志配置
# ==============================================================================
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# ==============================================================================
# 监听模式的函数 (原 remote_client.py)
# ==============================================================================
# 全局变量,用于在监听模式下共享状态
global_websocket = None
global_machine_id = None
global_card_id = None
global_machine_secret = None
global_server_url = None
async def upload_file_to_server(file_path, card_id, machine_secret, machine_id):
"""将文件上传到服务器的指定端点"""
try:
if not os.path.exists(file_path):
logger.error(f"[Uploader] File not found: {file_path}")
return False
upload_url = f"{global_server_url}/terminal/{card_id}/machine-upload?secret={urllib.parse.quote(machine_secret)}"
files = {'file': (os.path.basename(file_path), open(file_path, 'rb'), 'application/octet-stream')}
data = {'machine_id': machine_id}
logger.info(f"[Uploader] Uploading {os.path.basename(file_path)} to {upload_url}...")
response = requests.post(upload_url, files=files, data=data, timeout=120)
if response.status_code == 200:
result = response.json()
if result and result.get("success"):
logger.info(f"[Uploader] Upload successful: {file_path}")
return True
else:
logger.error(f"[Uploader] Upload failed: {result.get('error', 'Unknown error')}")
return False
else:
logger.error(f"[Uploader] Upload failed with status code {response.status_code}: {response.text}")
return False
except Exception as e:
logger.error(f"[Uploader] An exception occurred during upload: {e}")
return False
async def watch_directory_for_uploads(dir_to_watch, card_id, secret, get_machine_id_func):
"""
监视指定目录中的新文件,并自动上传。
"""
processed_files = set()
logger.info(f"[Watcher] Starting to watch directory: {dir_to_watch}")
# 初始扫描,将已存在的文件视为已处理
if os.path.isdir(dir_to_watch):
processed_files.update(os.listdir(dir_to_watch))
logger.info(f"[Watcher] Initial scan: {len(processed_files)} existing files ignored.")
while True:
await asyncio.sleep(5) # 每5秒检查一次
try:
if not os.path.isdir(dir_to_watch):
continue
current_files = set(os.listdir(dir_to_watch))
new_files = current_files - processed_files
if new_files:
machine_id = get_machine_id_func()
if not machine_id:
logger.warning("[Watcher] Machine ID not available, skipping upload cycle.")
continue
logger.info(f"[Watcher] Detected {len(new_files)} new file(s): {', '.join(new_files)}")
for filename in new_files:
file_path = os.path.join(dir_to_watch, filename)
# 等待文件写入完成 (简单检查)
await asyncio.sleep(2)
success = await upload_file_to_server(file_path, card_id, secret, machine_id)
if success:
logger.info(f"[Watcher] Successfully uploaded {filename}. Marking as processed.")
processed_files.add(filename)
else:
logger.warning(f"[Watcher] Failed to upload {filename}. Will retry on next cycle.")
# 同步已处理列表,移除已删除的文件
processed_files.intersection_update(current_files)
except Exception as e:
logger.error(f"[Watcher] Error in file watching loop: {e}")
async def start_listener_mode(card_id, machine_secret, watch_dir):
"""
启动监听模式的主函数。
"""
global global_websocket, global_machine_id, global_card_id, global_machine_secret, global_server_url
global_card_id = card_id
global_machine_secret = machine_secret
server_hostname = "remote-terminal-worker.nianxi4563.workers.dev" # 或者您的服务器域名
global_server_url = f"https://{server_hostname}"
encoded_secret = urllib.parse.quote(machine_secret)
uri = f"wss://{server_hostname}/terminal/{card_id}?secret={encoded_secret}"
# 启动文件监视器
def get_machine_id(): return global_machine_id
watcher_task = asyncio.create_task(watch_directory_for_uploads(watch_dir, card_id, machine_secret, get_machine_id))
while True: # 自动重连循环
try:
logger.info(f"[Listener] Attempting to connect to {uri}")
async with websockets.connect(uri, ping_interval=20, ping_timeout=60) as websocket:
global_websocket = websocket
logger.info("[Listener] Connected to WebSocket server.")
# 循环以获取 machine_id
while global_machine_id is None:
try:
response = await asyncio.wait_for(websocket.recv(), timeout=10.0)
data = json.loads(response)
if data.get("type") == "connected" and "machine_id" in data:
global_machine_id = data["machine_id"]
logger.info(f"[Listener] Assigned machine ID: {global_machine_id}")
break
except asyncio.TimeoutError:
logger.debug("[Listener] Waiting for machine ID...")
except Exception as e:
logger.error(f"[Listener] Error receiving machine ID: {e}")
await asyncio.sleep(5) # 等待后重试
break # break inner loop to reconnect
if not global_machine_id:
continue # continue outer loop to reconnect
# 主消息处理循环
while True:
message = await websocket.recv()
data = json.loads(message)
logger.debug(f"[Listener] Received message: {data}")
if data.get("type") == "command":
command = data["command"]
logger.info(f"[Listener] Received command: {command}")
# 使用 subprocess 在新进程中执行命令
# 这使得监听器可以继续工作,而推理在后台运行
try:
# 将命令包装在 `python app.py ...` 中
full_command = f"python app.py {command}"
logger.info(f"Executing subprocess: {full_command}")
subprocess.run(full_command, shell=True, check=True)
logger.info("Subprocess finished successfully.")
# 结果文件将由 watcher 自动上传
except subprocess.CalledProcessError as e:
logger.error(f"Command execution failed with return code {e.returncode}")
error_output = e.stderr if e.stderr else e.stdout
if global_websocket:
await global_websocket.send(json.dumps({
"type": "error", "data": f"Command failed: {error_output}", "machine_id": global_machine_id
}))
except Exception as e:
logger.error(f"Failed to run command: {e}")
except websockets.exceptions.ConnectionClosed as e:
logger.warning(f"[Listener] WebSocket closed: code={e.code}, reason={e.reason}. Reconnecting in 10 seconds...")
except Exception as e:
logger.error(f"[Listener] Connection failed: {e}. Reconnecting in 10 seconds...")
global_websocket = None
global_machine_id = None
await asyncio.sleep(10)
# ==============================================================================
# 推理模式的函数 (原 app.py)
# ==============================================================================
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
FPS = 30.0
# 全局变量以缓存加载的模型
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
output_dir = "output" # 所有模式共用的输出目录
Path(output_dir).mkdir(parents=True, exist_ok=True)
def initialize_models():
"""加载并初始化所有AI模型(如果尚未加载)。"""
global pipeline_instance, latent_upsampler_instance
if pipeline_instance is not None:
logger.info("Models already initialized.")
return
logger.info("Initializing models for the first time...")
logger.info("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
logger.info(f"Distilled model path: {distilled_model_actual_path}")
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
repo_id=LTX_REPO, filename=SPATIAL_UPSCALER_FILENAME, local_dir=models_dir, local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
logger.info(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
logger.info("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
logger.info("LTX Video pipeline created on CPU.")
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
logger.info("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], device="cpu"
)
logger.info("Latent upsampler created on CPU.")
target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Moving models to target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
logger.info("Model initialization complete.")
def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
input_image_filepath=None, input_video_filepath=None,
height_ui=512, width_ui=704, mode="text-to-video",
duration_ui=2.0, ui_frames_to_use=9,
seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):
# 确保模型已加载
initialize_models()
target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
if ui_guidance_scale is None:
ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0)
target_frames_ideal = duration_ui * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1:
target_frames_rounded = 1
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
actual_num_frames = max(9, actual_num_frames)
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
actual_height = int(height_ui)
actual_width = int(width_ui)
height_padded = ((actual_height - 1) // 32 + 1) * 32
width_padded = ((actual_width - 1) // 32 + 1) * 32
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
call_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
"num_frames": num_frames_padded, "frame_rate": int(FPS),
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt", "conditioning_items": None, "media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15,
"is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False, "enhance_prompt": False,
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
if mode == "image-to-video" and input_image_filepath:
try:
media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
except Exception as e:
logger.error(f"Error loading image {input_image_filepath}: {e}")
raise RuntimeError(f"Could not load image: {e}")
elif mode == "video-to-video" and input_video_filepath:
try:
call_kwargs["media_items"] = load_media_file(
media_path=input_video_filepath, height=actual_height, width=actual_width,
max_frames=int(ui_frames_to_use), padding=padding_values
).to(target_inference_device)
except Exception as e:
logger.error(f"Error loading video {input_video_filepath}: {e}")
raise RuntimeError(f"Could not load video: {e}")
active_latent_upsampler = latent_upsampler_instance if improve_texture_flag and latent_upsampler_instance else None
result_images_tensor = None
if improve_texture_flag:
if not active_latent_upsampler:
raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = {**PIPELINE_CONFIG_YAML.get("first_pass", {}), "guidance_scale": float(ui_guidance_scale)}
second_pass_args = {**PIPELINE_CONFIG_YAML.get("second_pass", {}), "guidance_scale": float(ui_guidance_scale)}
multi_scale_call_kwargs = {
**call_kwargs, "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": first_pass_args, "second_pass": second_pass_args
}
logger.info(f"Calling multi-scale pipeline on {target_inference_device}")
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
single_pass_call_kwargs = {**call_kwargs, **PIPELINE_CONFIG_YAML.get("first_pass", {}), "guidance_scale": float(ui_guidance_scale)}
logger.info(f"Calling base pipeline on {target_inference_device}")
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
if result_images_tensor is None:
raise RuntimeError("Generation failed, result tensor is None.")
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
video_np = (result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).clip(0, 255).astype(np.uint8)
# 使用随机数确保文件名几乎不重复
timestamp = random.randint(10000, 99999)
output_video_path = os.path.join(output_dir, f"output_{timestamp}_{seed_ui}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as writer:
for frame in video_np:
writer.append_data(frame)
except Exception:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264') as writer:
for frame in video_np:
writer.append_data(frame)
logger.info(f"Video saved successfully to: {output_video_path}")
return output_video_path, seed_ui
def run_inference(args):
"""处理命令行参数并运行AI推理。"""
logger.info(f"Starting single-run inference...")
logger.info(f"Prompt: {args.prompt}")
logger.info(f"Mode: {args.mode}")
logger.info(f"Duration: {args.duration}s")
logger.info(f"Resolution: {args.width}x{args.height}")
logger.info(f"Output directory: {os.path.abspath(output_dir)}")
try:
output_path, used_seed = generate(
prompt=args.prompt, negative_prompt=args.negative_prompt,
input_image_filepath=args.input_image, input_video_filepath=args.input_video,
height_ui=args.height, width_ui=args.width, mode=args.mode,
duration_ui=args.duration, ui_frames_to_use=args.frames_to_use,
seed_ui=args.seed, randomize_seed=args.randomize_seed,
ui_guidance_scale=args.guidance_scale, improve_texture_flag=not args.no_improve_texture
)
logger.info(f"\n✅ Video generation completed!")
logger.info(f"📁 Output saved to: {output_path}")
logger.info(f"🎲 Used seed: {used_seed}")
except Exception as e:
logger.error(f"❌ Error during generation: {e}", exc_info=True)
sys.exit(1)
# ==============================================================================
# 主入口和参数解析
# ==============================================================================
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LTX Video Generation and Server Client")
# --- 模式选择 ---
group = parser.add_argument_group('运行模式')
group.add_argument("--listen", action="store_true", help="以监听模式运行,连接到服务器等待指令。")
# --- 监听模式参数 ---
listener_group = parser.add_argument_group('监听模式参数 (需配合 --listen)')
listener_group.add_argument("--card-id", help="用于向服务器认证的Card ID。")
listener_group.add_argument("--secret", help="用于向服务器认证的Machine Secret。")
listener_group.add_argument("--watch-dir", default=output_dir, help=f"监听新文件并自动上传的目录 (默认: {output_dir})")
# --- 推理模式参数 ---
inference_group = parser.add_argument_group('推理模式参数 (默认模式)')
inference_group.add_argument("--prompt", help="用于视频生成的文本提示。")
inference_group.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted", help="负面提示。")
inference_group.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"], default="text-to-video", help="生成模式。")
inference_group.add_argument("--input-image", help="输入图像路径 (用于 image-to-video 模式)。")
inference_group.add_argument("--input-video", help="输入视频路径 (用于 video-to-video 模式)。")
inference_group.add_argument("--duration", type=float, default=2.0, help="视频时长 (秒, 0.3-8.5)。")
inference_group.add_argument("--height", type=int, default=512, help="视频高度 (将被调整为32的倍数)。")
inference_group.add_argument("--width", type=int, default=704, help="视频宽度 (将被调整为32的倍数)。")
inference_group.add_argument("--seed", type=int, default=42, help="随机种子。")
inference_group.add_argument("--randomize-seed", action="store_true", help="使用一个随机的种子。")
inference_group.add_argument("--guidance-scale", type=float, help="引导比例。")
inference_group.add_argument("--no-improve-texture", action="store_true", help="禁用纹理增强 (更快,但质量可能较低)。")
inference_group.add_argument("--frames-to-use", type=int, default=9, help="从输入视频中使用多少帧 (用于 video-to-video)。")
args = parser.parse_args()
# 根据模式分发任务
if args.listen:
if not args.card_id or not args.secret:
parser.error("--card-id 和 --secret 是 --listen 模式的必需参数。")
logger.info(f"启动监听模式... Card ID: {args.card_id}, Watch Dir: {args.watch_dir}")
try:
asyncio.run(start_listener_mode(args.card_id, args.secret, args.watch_dir))
except KeyboardInterrupt:
logger.info("监听模式已停止。")
else:
if not args.prompt:
parser.error("--prompt 是推理模式的必需参数。")
# 确保尺寸是32的倍数
args.height = ((args.height - 1) // 32 + 1) * 32
args.width = ((args.width - 1) // 32 + 1) * 32
run_inference(args) |