dangthr commited on
Commit
59a4c9f
·
verified ·
1 Parent(s): f59198d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +271 -405
app.py CHANGED
@@ -1,7 +1,5 @@
1
- # ==============================================================================
2
- # 统一入口和依赖项
3
- # ==============================================================================
4
  import torch
 
5
  import numpy as np
6
  import random
7
  import os
@@ -10,279 +8,48 @@ import argparse
10
  from pathlib import Path
11
  import imageio
12
  import tempfile
13
- from PIL import Image
14
- from huggingface_hub import hf_hub_download
15
- import shutil
16
-
17
- # 监听模式所需的依赖项
18
- import asyncio
19
- import websockets
20
- import subprocess
21
- import json
22
- import logging
23
- import sys
24
- import urllib.parse
25
- import requests
26
-
27
- from inference import (
28
- create_ltx_video_pipeline,
29
- create_latent_upsampler,
30
- load_image_to_tensor_with_resize_and_crop,
31
- seed_everething,
32
- get_device,
33
- calculate_padding,
34
- load_media_file
35
- )
36
- from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
37
- from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
38
-
39
- # ==============================================================================
40
- # 日志配置
41
- # ==============================================================================
42
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
43
- logger = logging.getLogger(__name__)
44
-
45
- # ==============================================================================
46
- # 监听模式的函数 (原 remote_client.py)
47
- # ==============================================================================
48
-
49
- # 全局变量,用于在监听模式下共享状态
50
- global_websocket = None
51
- global_machine_id = None
52
- global_card_id = None
53
- global_machine_secret = None
54
- global_server_url = None
55
-
56
- async def upload_file_to_server(file_path, card_id, machine_secret, machine_id):
57
- """将文件上传到服务器的指定端点"""
58
- try:
59
- if not os.path.exists(file_path):
60
- logger.error(f"[Uploader] File not found: {file_path}")
61
- return False
62
 
63
- upload_url = f"{global_server_url}/terminal/{card_id}/machine-upload?secret={urllib.parse.quote(machine_secret)}"
64
- files = {'file': (os.path.basename(file_path), open(file_path, 'rb'), 'application/octet-stream')}
65
- data = {'machine_id': machine_id}
66
 
67
- logger.info(f"[Uploader] Uploading {os.path.basename(file_path)} to {upload_url}...")
68
- response = requests.post(upload_url, files=files, data=data, timeout=120)
69
-
70
- if response.status_code == 200:
71
- result = response.json()
72
- if result and result.get("success"):
73
- logger.info(f"[Uploader] Upload successful: {file_path}")
74
- return True
75
- else:
76
- logger.error(f"[Uploader] Upload failed: {result.get('error', 'Unknown error')}")
77
- return False
78
- else:
79
- logger.error(f"[Uploader] Upload failed with status code {response.status_code}: {response.text}")
80
- return False
81
-
82
- except Exception as e:
83
- logger.error(f"[Uploader] An exception occurred during upload: {e}")
84
- return False
85
 
86
- async def watch_directory_for_uploads(dir_to_watch, card_id, secret, get_machine_id_func):
87
  """
88
- 监视指定目录中的新文件,并自动上传。
89
  """
90
- processed_files = set()
91
- logger.info(f"[Watcher] Starting to watch directory: {dir_to_watch}")
92
-
93
- # 初始扫描,将已存在的文件视为已处理
94
- if os.path.isdir(dir_to_watch):
95
- processed_files.update(os.listdir(dir_to_watch))
96
- logger.info(f"[Watcher] Initial scan: {len(processed_files)} existing files ignored.")
97
 
98
- while True:
99
- await asyncio.sleep(5) # 每5秒检查一次
100
- try:
101
- if not os.path.isdir(dir_to_watch):
102
- continue
103
 
104
- current_files = set(os.listdir(dir_to_watch))
105
- new_files = current_files - processed_files
106
-
107
- if new_files:
108
- machine_id = get_machine_id_func()
109
- if not machine_id:
110
- logger.warning("[Watcher] Machine ID not available, skipping upload cycle.")
111
- continue
112
-
113
- logger.info(f"[Watcher] Detected {len(new_files)} new file(s): {', '.join(new_files)}")
114
- for filename in new_files:
115
- file_path = os.path.join(dir_to_watch, filename)
116
- # 等待文件写入完成 (简单检查)
117
- await asyncio.sleep(2)
118
-
119
- success = await upload_file_to_server(file_path, card_id, secret, machine_id)
120
- if success:
121
- logger.info(f"[Watcher] Successfully uploaded {filename}. Marking as processed.")
122
- processed_files.add(filename)
123
- else:
124
- logger.warning(f"[Watcher] Failed to upload {filename}. Will retry on next cycle.")
125
-
126
- # 同步已处理列表,移除已删除的文件
127
- processed_files.intersection_update(current_files)
128
 
129
- except Exception as e:
130
- logger.error(f"[Watcher] Error in file watching loop: {e}")
131
 
 
132
 
133
- async def start_listener_mode(card_id, machine_secret, watch_dir):
134
- """
135
- 启动监听模式的主函数。
136
- """
137
- global global_websocket, global_machine_id, global_card_id, global_machine_secret, global_server_url
138
 
139
- global_card_id = card_id
140
- global_machine_secret = machine_secret
 
 
 
 
 
141
 
142
- server_hostname = "remote-terminal-worker.nianxi4563.workers.dev" # 或者您的服务器域名
143
- global_server_url = f"https://{server_hostname}"
144
- encoded_secret = urllib.parse.quote(machine_secret)
145
- uri = f"wss://{server_hostname}/terminal/{card_id}?secret={encoded_secret}"
146
 
147
- # 启动文件监视器
148
- def get_machine_id(): return global_machine_id
149
- watcher_task = asyncio.create_task(watch_directory_for_uploads(watch_dir, card_id, machine_secret, get_machine_id))
150
 
151
- while True: # 自动重连循环
152
- try:
153
- logger.info(f"[Listener] Attempting to connect to {uri}")
154
- async with websockets.connect(uri, ping_interval=20, ping_timeout=60) as websocket:
155
- global_websocket = websocket
156
- logger.info("[Listener] Connected to WebSocket server.")
157
-
158
- # 循环以获取 machine_id
159
- while global_machine_id is None:
160
- try:
161
- response = await asyncio.wait_for(websocket.recv(), timeout=10.0)
162
- data = json.loads(response)
163
- if data.get("type") == "connected" and "machine_id" in data:
164
- global_machine_id = data["machine_id"]
165
- logger.info(f"[Listener] Assigned machine ID: {global_machine_id}")
166
- break
167
- except asyncio.TimeoutError:
168
- logger.debug("[Listener] Waiting for machine ID...")
169
- except Exception as e:
170
- logger.error(f"[Listener] Error receiving machine ID: {e}")
171
- await asyncio.sleep(5) # 等待后重试
172
- break # break inner loop to reconnect
173
-
174
- if not global_machine_id:
175
- continue # continue outer loop to reconnect
176
-
177
- # 主消息处理循环
178
- while True:
179
- message = await websocket.recv()
180
- data = json.loads(message)
181
- logger.debug(f"[Listener] Received message: {data}")
182
-
183
- if data.get("type") == "command":
184
- command = data["command"]
185
- logger.info(f"[Listener] Received command: {command}")
186
-
187
- # 使用 subprocess 在新进程中执行命令
188
- # 这使得监听器可以继续工作,而推理在后台运行
189
- try:
190
- # 将命令包装在 `python app.py ...` 中
191
- full_command = f"python app.py {command}"
192
- logger.info(f"Executing subprocess: {full_command}")
193
- subprocess.run(full_command, shell=True, check=True)
194
- logger.info("Subprocess finished successfully.")
195
- # 结果文件将由 watcher 自动上传
196
- except subprocess.CalledProcessError as e:
197
- logger.error(f"Command execution failed with return code {e.returncode}")
198
- error_output = e.stderr if e.stderr else e.stdout
199
- if global_websocket:
200
- await global_websocket.send(json.dumps({
201
- "type": "error", "data": f"Command failed: {error_output}", "machine_id": global_machine_id
202
- }))
203
- except Exception as e:
204
- logger.error(f"Failed to run command: {e}")
205
-
206
- except websockets.exceptions.ConnectionClosed as e:
207
- logger.warning(f"[Listener] WebSocket closed: code={e.code}, reason={e.reason}. Reconnecting in 10 seconds...")
208
- except Exception as e:
209
- logger.error(f"[Listener] Connection failed: {e}. Reconnecting in 10 seconds...")
210
-
211
- global_websocket = None
212
- global_machine_id = None
213
- await asyncio.sleep(10)
214
-
215
-
216
- # ==============================================================================
217
- # 推理模式的函数 (原 app.py)
218
- # ==============================================================================
219
- config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
220
- with open(config_file_path, "r") as file:
221
- PIPELINE_CONFIG_YAML = yaml.safe_load(file)
222
-
223
- LTX_REPO = "Lightricks/LTX-Video"
224
- MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
225
- MAX_NUM_FRAMES = 257
226
- FPS = 30.0
227
-
228
- # 全局变量以缓存加载的模型
229
- pipeline_instance = None
230
- latent_upsampler_instance = None
231
- models_dir = "downloaded_models_gradio_cpu_init"
232
- Path(models_dir).mkdir(parents=True, exist_ok=True)
233
- output_dir = "output" # 所有模式共用的输出目录
234
- Path(output_dir).mkdir(parents=True, exist_ok=True)
235
-
236
- def initialize_models():
237
- """加载并初始化所有AI模型(如果尚未加载)。"""
238
- global pipeline_instance, latent_upsampler_instance
239
-
240
- if pipeline_instance is not None:
241
- logger.info("Models already initialized.")
242
- return
243
 
244
- logger.info("Initializing models for the first time...")
245
- logger.info("Downloading models (if not present)...")
246
- distilled_model_actual_path = hf_hub_download(
247
- repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False
248
- )
249
- PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
250
- logger.info(f"Distilled model path: {distilled_model_actual_path}")
251
-
252
- SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
253
- spatial_upscaler_actual_path = hf_hub_download(
254
- repo_id=LTX_REPO, filename=SPATIAL_UPSCALER_FILENAME, local_dir=models_dir, local_dir_use_symlinks=False
255
- )
256
- PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
257
- logger.info(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
258
-
259
- logger.info("Creating LTX Video pipeline on CPU...")
260
- pipeline_instance = create_ltx_video_pipeline(
261
- ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
262
- precision=PIPELINE_CONFIG_YAML["precision"],
263
- text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
264
- sampler=PIPELINE_CONFIG_YAML["sampler"],
265
- device="cpu",
266
- enhance_prompt=False,
267
- prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
268
- prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
269
- )
270
- logger.info("LTX Video pipeline created on CPU.")
271
-
272
- if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
273
- logger.info("Creating latent upsampler on CPU...")
274
- latent_upsampler_instance = create_latent_upsampler(
275
- PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], device="cpu"
276
- )
277
- logger.info("Latent upsampler created on CPU.")
278
 
279
- target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"
280
- logger.info(f"Moving models to target inference device: {target_inference_device}")
281
- pipeline_instance.to(target_inference_device)
282
- if latent_upsampler_instance:
283
- latent_upsampler_instance.to(target_inference_device)
284
- logger.info("Model initialization complete.")
285
 
 
286
 
287
  def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
288
  input_image_filepath=None, input_video_filepath=None,
@@ -290,10 +57,18 @@ def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry
290
  duration_ui=2.0, ui_frames_to_use=9,
291
  seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):
292
 
293
- # 确保模型已加载
294
- initialize_models()
295
-
296
- target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
297
 
298
  if randomize_seed:
299
  seed_ui = random.randint(0, 2**32 - 1)
@@ -305,190 +80,281 @@ def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry
305
  target_frames_ideal = duration_ui * FPS
306
  target_frames_rounded = round(target_frames_ideal)
307
  if target_frames_rounded < 1:
308
- target_frames_rounded = 1
309
-
310
- n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
311
- actual_num_frames = int(n_val * 8 + 1)
312
-
313
- actual_num_frames = max(9, actual_num_frames)
314
- actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
315
-
316
- actual_height = int(height_ui)
317
- actual_width = int(width_ui)
318
 
319
  height_padded = ((actual_height - 1) // 32 + 1) * 32
320
  width_padded = ((actual_width - 1) // 32 + 1) * 32
321
  num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
 
 
322
 
323
  padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
324
 
325
- call_kwargs = {
326
- "prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
327
- "num_frames": num_frames_padded, "frame_rate": int(FPS),
328
- "generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
329
- "output_type": "pt", "conditioning_items": None, "media_items": None,
330
- "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
331
- "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], "image_cond_noise_scale": 0.15,
332
- "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
333
- "offload_to_cpu": False, "enhance_prompt": False,
334
- }
335
-
336
- stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
337
- if stg_mode_str.lower() in ["stg_av", "attention_values"]:
338
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
339
- elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
340
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
341
- elif stg_mode_str.lower() in ["stg_r", "residual"]:
342
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
343
- elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
344
- call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
345
- else:
346
- raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
347
-
348
- if mode == "image-to-video" and input_image_filepath:
349
- try:
350
- media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
351
- media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
352
  call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
353
  except Exception as e:
354
- logger.error(f"Error loading image {input_image_filepath}: {e}")
355
  raise RuntimeError(f"Could not load image: {e}")
356
  elif mode == "video-to-video" and input_video_filepath:
357
  try:
358
  call_kwargs["media_items"] = load_media_file(
359
- media_path=input_video_filepath, height=actual_height, width=actual_width,
360
- max_frames=int(ui_frames_to_use), padding=padding_values
361
  ).to(target_inference_device)
362
  except Exception as e:
363
- logger.error(f"Error loading video {input_video_filepath}: {e}")
364
  raise RuntimeError(f"Could not load video: {e}")
365
 
366
- active_latent_upsampler = latent_upsampler_instance if improve_texture_flag and latent_upsampler_instance else None
 
367
  result_images_tensor = None
368
-
369
  if improve_texture_flag:
370
  if not active_latent_upsampler:
371
- raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected.")
372
 
373
  multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
374
- first_pass_args = {**PIPELINE_CONFIG_YAML.get("first_pass", {}), "guidance_scale": float(ui_guidance_scale)}
375
- second_pass_args = {**PIPELINE_CONFIG_YAML.get("second_pass", {}), "guidance_scale": float(ui_guidance_scale)}
376
 
377
- multi_scale_call_kwargs = {
378
- **call_kwargs, "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
379
- "first_pass": first_pass_args, "second_pass": second_pass_args
380
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
381
 
382
- logger.info(f"Calling multi-scale pipeline on {target_inference_device}")
383
- result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
384
- else:
385
- single_pass_call_kwargs = {**call_kwargs, **PIPELINE_CONFIG_YAML.get("first_pass", {}), "guidance_scale": float(ui_guidance_scale)}
386
- logger.info(f"Calling base pipeline on {target_inference_device}")
387
  result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
388
 
389
  if result_images_tensor is None:
390
- raise RuntimeError("Generation failed, result tensor is None.")
391
 
392
  pad_left, pad_right, pad_top, pad_bottom = padding_values
393
  slice_h_end = -pad_bottom if pad_bottom > 0 else None
394
- slice_w_end = -pad_right if pad_right > 0 else None
395
-
396
- result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end]
 
 
 
397
 
398
- video_np = (result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).clip(0, 255).astype(np.uint8)
399
-
400
- # 使用随机数确保文件名几乎不重复
401
  timestamp = random.randint(10000, 99999)
402
- output_video_path = os.path.join(output_dir, f"output_{timestamp}_{seed_ui}.mp4")
 
403
 
404
  try:
405
- with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as writer:
406
- for frame in video_np:
407
- writer.append_data(frame)
408
- except Exception:
409
- with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264') as writer:
410
- for frame in video_np:
411
- writer.append_data(frame)
412
-
413
- logger.info(f"Video saved successfully to: {output_video_path}")
 
 
 
 
 
 
 
 
 
 
414
  return output_video_path, seed_ui
415
 
416
- def run_inference(args):
417
- """处理命令行参数并运行AI推理。"""
418
- logger.info(f"Starting single-run inference...")
419
- logger.info(f"Prompt: {args.prompt}")
420
- logger.info(f"Mode: {args.mode}")
421
- logger.info(f"Duration: {args.duration}s")
422
- logger.info(f"Resolution: {args.width}x{args.height}")
423
- logger.info(f"Output directory: {os.path.abspath(output_dir)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424
 
425
  try:
426
  output_path, used_seed = generate(
427
- prompt=args.prompt, negative_prompt=args.negative_prompt,
428
- input_image_filepath=args.input_image, input_video_filepath=args.input_video,
429
- height_ui=args.height, width_ui=args.width, mode=args.mode,
430
- duration_ui=args.duration, ui_frames_to_use=args.frames_to_use,
431
- seed_ui=args.seed, randomize_seed=args.randomize_seed,
432
- ui_guidance_scale=args.guidance_scale, improve_texture_flag=not args.no_improve_texture
 
 
 
 
 
 
 
433
  )
434
- logger.info(f"\n✅ Video generation completed!")
435
- logger.info(f"📁 Output saved to: {output_path}")
436
- logger.info(f"🎲 Used seed: {used_seed}")
 
437
 
438
  except Exception as e:
439
- logger.error(f"Error during generation: {e}", exc_info=True)
440
- sys.exit(1)
441
-
442
 
443
- # ==============================================================================
444
- # 主入口和参数解析
445
- # ==============================================================================
446
  if __name__ == "__main__":
447
- parser = argparse.ArgumentParser(description="LTX Video Generation and Server Client")
 
448
 
449
- # --- 模式选择 ---
450
- group = parser.add_argument_group('运行模式')
451
- group.add_argument("--listen", action="store_true", help="以监听模式运行,连接到服务器等待指令。")
452
-
453
- # --- 监听模式参数 ---
454
- listener_group = parser.add_argument_group('监听模式参数 (需配合 --listen)')
455
- listener_group.add_argument("--card-id", help="用于向服务器认证的Card ID。")
456
- listener_group.add_argument("--secret", help="用于向服务器认证的Machine Secret。")
457
- listener_group.add_argument("--watch-dir", default=output_dir, help=f"监听新文件并自动上传的目录 (默认: {output_dir})")
458
-
459
- # --- 推理模式参数 ---
460
- inference_group = parser.add_argument_group('推理模式参数 (默认模式)')
461
- inference_group.add_argument("--prompt", help="用于视频生成的文本提示。")
462
- inference_group.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted", help="负面提示。")
463
- inference_group.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"], default="text-to-video", help="生成模式。")
464
- inference_group.add_argument("--input-image", help="输入图像路径 (用于 image-to-video 模式)。")
465
- inference_group.add_argument("--input-video", help="输入视频路径 (用于 video-to-video 模式)。")
466
- inference_group.add_argument("--duration", type=float, default=2.0, help="视频时长 (秒, 0.3-8.5)。")
467
- inference_group.add_argument("--height", type=int, default=512, help="视频高度 (将被调整为32的倍数)。")
468
- inference_group.add_argument("--width", type=int, default=704, help="视频宽度 (将被调整为32的倍数)���")
469
- inference_group.add_argument("--seed", type=int, default=42, help="随机种子。")
470
- inference_group.add_argument("--randomize-seed", action="store_true", help="使用一个随机的种子。")
471
- inference_group.add_argument("--guidance-scale", type=float, help="引导比例。")
472
- inference_group.add_argument("--no-improve-texture", action="store_true", help="禁用纹理增强 (更快,但质量可能较低)。")
473
- inference_group.add_argument("--frames-to-use", type=int, default=9, help="从输入视频中使用多少帧 (用于 video-to-video)。")
474
-
475
- args = parser.parse_args()
476
-
477
- # 根据模式分发任务
478
- if args.listen:
479
- if not args.card_id or not args.secret:
480
- parser.error("--card-id 和 --secret 是 --listen 模式的必需参数。")
481
- logger.info(f"启动监听模式... Card ID: {args.card_id}, Watch Dir: {args.watch_dir}")
482
- try:
483
- asyncio.run(start_listener_mode(args.card_id, args.secret, args.watch_dir))
484
- except KeyboardInterrupt:
485
- logger.info("监听模式已停止。")
486
- else:
487
- if not args.prompt:
488
- parser.error("--prompt 是推理模式的必需参数。")
489
-
490
- # 确保尺寸是32的倍数
491
- args.height = ((args.height - 1) // 32 + 1) * 32
492
- args.width = ((args.width - 1) // 32 + 1) * 32
493
-
494
- run_inference(args)
 
 
 
 
1
  import torch
2
+
3
  import numpy as np
4
  import random
5
  import os
 
8
  from pathlib import Path
9
  import imageio
10
  import tempfile
11
+ if latent_upsampler_instance:
12
+ latent_upsampler_instance.to(target_inference_device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
 
 
 
14
 
15
+ # --- Helper function for dimension calculation ---
16
+ MIN_DIM_SLIDER = 256
17
+ TARGET_FIXED_SIDE = 768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ def calculate_new_dimensions(orig_w, orig_h):
20
  """
21
+ both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
22
  """
23
+ if orig_w == 0 or orig_h == 0:
 
 
 
 
 
 
24
 
25
+ return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
 
 
 
 
26
 
27
+ if orig_w >= orig_h:
28
+ new_h = TARGET_FIXED_SIDE
29
+ aspect_ratio = orig_w / orig_h
30
+ new_w_ideal = new_h * aspect_ratio
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
 
 
32
 
33
+ new_w = round(new_w_ideal / 32) * 32
34
 
 
 
 
 
 
35
 
36
+ new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
37
+
38
+ new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
39
+ else:
40
+ new_w = TARGET_FIXED_SIDE
41
+ aspect_ratio = orig_h / orig_w
42
+ new_h_ideal = new_w * aspect_ratio
43
 
 
 
 
 
44
 
45
+ new_h = round(new_h_ideal / 32) * 32
 
 
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
+ new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
 
 
 
 
 
51
 
52
+ return int(new_h), int(new_w)
53
 
54
  def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
55
  input_image_filepath=None, input_video_filepath=None,
 
57
  duration_ui=2.0, ui_frames_to_use=9,
58
  seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):
59
 
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
 
73
  if randomize_seed:
74
  seed_ui = random.randint(0, 2**32 - 1)
 
80
  target_frames_ideal = duration_ui * FPS
81
  target_frames_rounded = round(target_frames_ideal)
82
  if target_frames_rounded < 1:
 
 
 
 
 
 
 
 
 
 
83
 
84
  height_padded = ((actual_height - 1) // 32 + 1) * 32
85
  width_padded = ((actual_width - 1) // 32 + 1) * 32
86
  num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
87
+
88
+
89
 
90
  padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
93
  except Exception as e:
94
+ print(f"Error loading image {input_image_filepath}: {e}")
95
  raise RuntimeError(f"Could not load image: {e}")
96
  elif mode == "video-to-video" and input_video_filepath:
97
  try:
98
  call_kwargs["media_items"] = load_media_file(
 
 
99
  ).to(target_inference_device)
100
  except Exception as e:
101
+ print(f"Error loading video {input_video_filepath}: {e}")
102
  raise RuntimeError(f"Could not load video: {e}")
103
 
104
+ print(f"Moving models to {target_inference_device} for inference (if not already there)...")
105
+
106
  result_images_tensor = None
 
107
  if improve_texture_flag:
108
  if not active_latent_upsampler:
109
+ raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
110
 
111
  multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
 
 
112
 
113
+ first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
114
+ first_pass_args["guidance_scale"] = float(ui_guidance_scale)
115
+
116
+ first_pass_args.pop("num_inference_steps", None)
117
+
118
+
119
+ second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
120
+ second_pass_args["guidance_scale"] = float(ui_guidance_scale)
121
+
122
+ second_pass_args.pop("num_inference_steps", None)
123
+
124
+ multi_scale_call_kwargs = call_kwargs.copy()
125
+ first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
126
+
127
+ single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
128
+ single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
129
+ single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
130
+ single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
131
+ single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
132
 
133
+
134
+ single_pass_call_kwargs.pop("num_inference_steps", None)
135
+ single_pass_call_kwargs.pop("first_pass", None)
136
+ single_pass_call_kwargs.pop("second_pass", None)
 
137
  result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
138
 
139
  if result_images_tensor is None:
140
+ raise RuntimeError("Generation failed.")
141
 
142
  pad_left, pad_right, pad_top, pad_bottom = padding_values
143
  slice_h_end = -pad_bottom if pad_bottom > 0 else None
144
+ ]
145
+
146
+ video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
147
+
148
+ video_np = np.clip(video_np, 0, 1)
149
+ video_np = (video_np * 255).astype(np.uint8)
150
 
 
 
 
151
  timestamp = random.randint(10000, 99999)
152
+ output_video_path = f"output_{timestamp}.mp4"
153
+
154
 
155
  try:
156
+ with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
157
+ for frame_idx in range(video_np.shape[0]):
158
+
159
+ video_writer.append_data(video_np[frame_idx])
160
+ if frame_idx % 10 == 0:
161
+ print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]}")
162
+ except Exception as e:
163
+ print(f"Error saving video with macro_block_size=1: {e}")
164
+ try:
165
+ with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
166
+ for frame_idx in range(video_np.shape[0]):
167
+
168
+ video_writer.append_data(video_np[frame_idx])
169
+ if frame_idx % 10 == 0:
170
+ print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]} (fallback)")
171
+ except Exception as e2:
172
+ print(f"Fallback video saving error: {e2}")
173
+ raise RuntimeError(f"Failed to save video: {e2}")
174
+
175
  return output_video_path, seed_ui
176
 
177
+ def main():
178
+ parser = argparse.ArgumentParser(description="LTX Video Generation from Command Line")
179
+ parser.add_argument("--prompt", required=True, help="Text prompt for video generation")
180
+ parser.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted",
181
+ help="Negative prompt")
182
+ parser.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"],
183
+ default="text-to-video", help="Generation mode")
184
+ parser.add_argument("--input-image", help="Input image path for image-to-video mode")
185
+ parser.add_argument("--input-video", help="Input video path for video-to-video mode")
186
+ parser.add_argument("--duration", type=float, default=2.0, help="Video duration in seconds (0.3-8.5)")
187
+ parser.add_argument("--height", type=int, default=512, help="Video height (must be divisible by 32)")
188
+ parser.add_argument("--width", type=int, default=704, help="Video width (must be divisible by 32)")
189
+ parser.add_argument("--seed", type=int, default=42, help="Random seed")
190
+ parser.add_argument("--randomize-seed", action="store_true", help="Use random seed")
191
+ parser.add_argument("--guidance-scale", type=float, help="Guidance scale for generation")
192
+ parser.add_argument("--no-improve-texture", action="store_true", help="Disable texture improvement (faster)")
193
+ parser.add_argument("--frames-to-use", type=int, default=9, help="Frames to use from input video (for video-to-video)")
194
+
195
+
196
+
197
+
198
+ args = parser.parse_args()
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
253
+
254
+
255
+
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+
264
+
265
+
266
+
267
+
268
+
269
+
270
+
271
+
272
+
273
+
274
+
275
+
276
+
277
+
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+ # Validate parameters
297
+ if args.mode == "image-to-video" and not args.input_image:
298
+ print("Error: --input-image is required for image-to-video mode")
299
+ return
300
+
301
+
302
+
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+ if args.mode == "video-to-video" and not args.input_video:
317
+ print("Error: --input-video is required for video-to-video mode")
318
+ return
319
+
320
+
321
+ # Ensure dimensions are divisible by 32
322
+ args.height = ((args.height - 1) // 32 + 1) * 32
323
+ args.width = ((args.width - 1) // 32 + 1) * 32
324
+
325
+ print(f"Starting video generation...")
326
+ print(f"Prompt: {args.prompt}")
327
+ print(f"Mode: {args.mode}")
328
+ print(f"Duration: {args.duration}s")
329
+ print(f"Resolution: {args.width}x{args.height}")
330
 
331
  try:
332
  output_path, used_seed = generate(
333
+ prompt=args.prompt,
334
+ negative_prompt=args.negative_prompt,
335
+ input_image_filepath=args.input_image,
336
+ input_video_filepath=args.input_video,
337
+ height_ui=args.height,
338
+ width_ui=args.width,
339
+ mode=args.mode,
340
+ duration_ui=args.duration,
341
+ ui_frames_to_use=args.frames_to_use,
342
+ seed_ui=args.seed,
343
+ randomize_seed=args.randomize_seed,
344
+ ui_guidance_scale=args.guidance_scale,
345
+ improve_texture_flag=not args.no_improve_texture
346
  )
347
+
348
+ print(f"\nVideo generation completed!")
349
+ print(f"Output saved to: {output_path}")
350
+ print(f"Used seed: {used_seed}")
351
 
352
  except Exception as e:
353
+ print(f"Error during generation: {e}")
354
+ raise
 
355
 
 
 
 
356
  if __name__ == "__main__":
357
+ if os.path.exists(models_dir) and os.path.isdir(models_dir):
358
+ print(f"Model directory: {Path(models_dir).resolve()}")
359
 
360
+ main()