|
import os |
|
import json |
|
from PIL import Image |
|
import gradio as gr |
|
|
|
def load_examples(): |
|
examples = [] |
|
examples_base_path = os.path.join("apps", "assets", "examples", "Real-ESRGAN-Anime-finetuning") |
|
|
|
for folder in ["1", "2", "3", "4"]: |
|
folder_path = os.path.join(examples_base_path, folder) |
|
config_path = os.path.join(folder_path, "config.json") |
|
|
|
if os.path.exists(config_path): |
|
with open(config_path, 'r') as f: |
|
config = json.load(f) |
|
input_filename = config.get("input_file", "input.jpg") |
|
output_filename = config.get("output_file", "output.jpg") |
|
outer_scale = config.get("outer_scale", 4) |
|
|
|
input_image_path = os.path.join(folder_path, input_filename) |
|
output_image_path = os.path.join(folder_path, output_filename) |
|
|
|
if os.path.exists(input_image_path) and os.path.exists(output_image_path): |
|
input_image_data = Image.open(input_image_path) |
|
output_image_data = Image.open(output_image_path) |
|
examples.append([input_image_data, output_image_data, outer_scale]) |
|
|
|
return examples |
|
|
|
def select_example(evt: gr.SelectData, examples_data): |
|
example_index = evt.index |
|
input_image_data, output_image_data, outer_scale = examples_data[example_index] |
|
return input_image_data, outer_scale, output_image_data, f"Loaded example with Outer Scale: {outer_scale}" |