File size: 5,615 Bytes
10a4a0a
 
 
d47e042
10a4a0a
 
 
d47e042
 
 
 
 
 
 
10a4a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f710c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import gradio as gr
from PIL import Image
from gradio_app.inference import run_inference
from gradio_app.components import (    
    list_reference_files, list_mapping_files,
    list_classifier_files, list_edgeface_files
)

from gradio_app.project_info import (
    CONTENT_DESCRIPTION, CONTENT_OUTTRO,
    CONTENT_IN_1, CONTENT_IN_2,
    CONTENT_OUT_1, CONTENT_OUT_2
)

from glob import glob
import os

def create_image_io_row():
    """Create the row for image input and output display."""
    with gr.Row(elem_classes=["image-io-row"]):
        image_input = gr.Image(type="pil", label="Upload Image")
        output = gr.HTML(label="Inference Results", elem_classes=["results-container"])
    return image_input, output

def create_model_settings_row():
    """Create the row for model files and settings."""
    with gr.Row():
        with gr.Column():
            with gr.Group(elem_classes=["section-group"]):
                gr.Markdown("### Model Files", elem_classes=["section-title"])
                ref_dict = gr.Dropdown(
                    choices=["Select a file"] + list_reference_files(),
                    label="Reference Dict JSON",
                    value="data/reference_data/reference_image_data.json"
                )
                index_map = gr.Dropdown(
                    choices=["Select a file"] + list_mapping_files(),
                    label="Index to Class Mapping JSON",
                    value="ckpts/index_to_class_mapping.json"
                )
                classifier_model = gr.Dropdown(
                    choices=["Select a file"] + list_classifier_files(),
                    label="Classifier Model (.pth)",
                    value="ckpts/SlimFace_efficientnet_b3_full_model.pth"
                )
                edgeface_model = gr.Dropdown(
                    choices=["Select a file"] + list_edgeface_files(),
                    label="EdgeFace Model (.pt)",
                    value="ckpts/idiap/edgeface_s_gamma_05.pt"
                )
        with gr.Column():
            with gr.Group(elem_classes=["section-group"]):
                gr.Markdown("### Advanced Settings", elem_classes=["section-title"])
                algorithm = gr.Dropdown(
                    choices=["yolo", "mtcnn", "retinaface"],
                    label="Detection Algorithm",
                    value="yolo"
                )
                accelerator = gr.Dropdown(
                    choices=["auto", "cpu", "cuda", "mps"],
                    label="Accelerator",
                    value="auto"
                )
                resolution = gr.Slider(
                    minimum=128,
                    maximum=512,
                    step=32,
                    label="Image Resolution",
                    value=300
                )
                similarity_threshold = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    step=0.05,
                    label="Similarity Threshold",
                    value=0.3
                )
    return ref_dict, index_map, classifier_model, edgeface_model, algorithm, accelerator, resolution, similarity_threshold

# Load local CSS file
CSS = open("apps/gradio_app/static/styles.css").read()

def create_interface():
    """Create the Gradio interface for SlimFace."""
    with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
        gr.Markdown("# SlimFace Demonstration")
        gr.Markdown(CONTENT_DESCRIPTION)
        gr.Markdown(CONTENT_IN_1)
        gr.HTML(CONTENT_IN_2)

        image_input, output = create_image_io_row()
        ref_dict, index_map, classifier_model, edgeface_model, algorithm, accelerator, resolution, similarity_threshold = create_model_settings_row()
        
        # Add example image gallery as a row of columns
        with gr.Group():
            gr.Markdown("### Example Images")
            example_images = glob("apps/assets/examples/*.[jp][pn][gf]")
            if example_images:
                with gr.Row(elem_classes=["example-row"]):
                    for img_path in example_images:
                        with gr.Column(min_width=120):
                            gr.Image(
                                value=img_path,
                                label=os.path.basename(img_path),
                                type="filepath",
                                height=100,
                                elem_classes=["example-image"]
                            )
                            gr.Button(f"Use {os.path.basename(img_path)}").click(
                                fn=lambda x=img_path: Image.open(x),
                                outputs=image_input
                            )
            else:
                gr.Markdown("No example images found in apps/assets/examples/")

        with gr.Row():
            submit_btn = gr.Button("Run Inference", variant="primary", elem_classes=["centered-button"])
        
        submit_btn.click(
            fn=run_inference,
            inputs=[
                image_input,
                ref_dict,
                index_map,
                classifier_model,
                edgeface_model,
                algorithm,
                accelerator,
                resolution,
                similarity_threshold
            ],
            outputs=output
        )
        gr.Markdown(CONTENT_OUTTRO)
        gr.HTML(CONTENT_OUT_1)
        gr.Markdown(CONTENT_OUT_2)
    return demo

def main():
    """Launch the Gradio interface."""
    demo = create_interface()
    demo.launch()

if __name__ == "__main__":
    main()