File size: 10,147 Bytes
b7f710c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import sys
import torch
import torchvision.transforms as transforms
from PIL import Image
import argparse
import warnings
import json

# Append necessary paths
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "third_party")))
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))

from edgeface.face_alignment import align as edgeface_align
from edgeface.backbones import get_model
from models.detection_models import align as align_classifier

def preprocess_image(image_path, algorithm='yolo', resolution=224):
    try:
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=FutureWarning, message=".*rcond.*")
            aligned_result = align_classifier.get_aligned_face([image_path], algorithm=algorithm)
            aligned_image = aligned_result[0][1] if aligned_result and len(aligned_result) > 0 else Image.open(image_path).convert('RGB')
            aligned_image = aligned_image.resize((resolution, resolution), Image.Resampling.LANCZOS)
    except Exception as e:
        print(f"Error processing {image_path}: {e}")
        aligned_image = Image.open(image_path).convert('RGB').resize((resolution, resolution), Image.Resampling.LANCZOS)
    
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])
    return transform(aligned_image).unsqueeze(0)

def load_model(model_path):
    try:
        model = torch.jit.load(model_path, map_location=torch.device('cpu'))
        model.eval()
        return model
    except Exception as e:
        raise RuntimeError(f"Failed to load model from {model_path}: {e}")

def load_class_mapping(index_to_class_mapping_path):
    try:
        with open(index_to_class_mapping_path, 'r') as f:
            idx_to_class = json.load(f)
        return {int(k): v for k, v in idx_to_class.items()}
    except Exception as e:
        raise ValueError(f"Error loading class mapping: {e}")

def get_edgeface_embeddings(image_path, model_path):
    """Get EdgeFace embeddings for a given image."""
    model_name = os.path.basename(model_path).split('.')[0]
    model = get_model(model_name)
    model.load_state_dict(torch.load(model_path, map_location='cpu'))
    model.eval()
    
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
    ])
    
    aligned_result = edgeface_align.get_aligned_face(image_path, algorithm='yolo')
    if not aligned_result:
        raise ValueError(f"Face alignment failed for {image_path}")
    
    with torch.no_grad():
        return model(transform(aligned_result[0][1]).unsqueeze(0))

# def inference_and_confirm(args):
#     idx_to_class = load_class_mapping(args.index_to_class_mapping_path)
#     classifier_model = load_model(args.model_path)
#     device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu')
#     classifier_model = classifier_model.to(device)
    
#     # Load reference images mapping from JSON file
#     try:
#         with open(args.reference_dict_path, 'r') as f:
#             reference_images = json.load(f)
#     except Exception as e:
#         raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}")
    
#     # Handle single image or directory
#     image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [
#         os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path) 
#         if img.endswith(('.jpg', '.jpeg', '.png'))
#     ]
    
#     results = []
#     with torch.no_grad():
#         for image_path in image_paths:
#             image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device)
#             output = classifier_model(image_tensor)
#             probabilities = torch.softmax(output, dim=1)
#             confidence, predicted = torch.max(probabilities, 1)
#             predicted_class = idx_to_class.get(predicted.item(), "Unknown")
            
#             result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()}
            
#             # Validate with EdgeFace embeddings if reference image exists
#             reference_image_path = reference_images.get(predicted_class)
#             if reference_image_path and os.path.exists(reference_image_path):
#                 unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path)
#                 reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path)
#                 similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item()
#                 result['similarity'] = similarity
#                 result['confirmed'] = similarity >= args.similarity_threshold
#             else:
#                 raise ValueError(f("Reference image for class '{predicted_class}' "
#                                    "not found in {args.reference_dict_path}"))
            
#             results.append(result)

#     #  {'image_path': 'tests/test_images/dont_know.jpg', 'predicted_class': 'Robert Downey Jr',
#     #  'confidence': 0.9292604923248291, 'similarity': 0.603316068649292, 'confirmed': True}

    return results

def inference_and_confirm(args):
    idx_to_class = load_class_mapping(args.index_to_class_mapping_path)
    classifier_model = load_model(args.model_path)
    device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu')
    classifier_model = classifier_model.to(device)
    
    # Load reference images mapping from JSON file
    try:
        with open(args.reference_dict_path, 'r') as f:
            reference_images = json.load(f)
    except Exception as e:
        raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}")
    
    # Handle single image or directory
    image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [
        os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path) 
        if img.endswith(('.jpg', '.jpeg', '.png'))
    ]
    
    results = []
    with torch.no_grad():
        for image_path in image_paths:
            image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device)
            output = classifier_model(image_tensor)
            probabilities = torch.softmax(output, dim=1)
            confidence, predicted = torch.max(probabilities, 1)
            predicted_class = idx_to_class.get(predicted.item(), "Unknown")
            
            result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()}
            
            # Validate with EdgeFace embeddings if reference image exists
            reference_image_path = reference_images.get(predicted_class)
            if reference_image_path and os.path.exists(reference_image_path):
                unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path)
                reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path)
                similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item()
                result['similarity'] = similarity
                result['confirmed'] = similarity >= args.similarity_threshold
            else:
                result['similarity'] = None
                result['confirmed'] = False
            
            results.append(result)

    return results

def main(args):
    results = inference_and_confirm(args)
    for result in results:
        print(f"Image: {result['image_path']}, Predicted Class: {result['predicted_class']}, "
              f"Confidence: {result['confidence']:.4f}, Similarity: {result.get('similarity', 'N/A'):.4f}, "
              f"Confirmed: {result.get('confirmed', 'N/A')}")
        
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Face classification with EdgeFace embedding validation.')
    parser.add_argument('--unknown_image_path', type=str, required=True, help='Path to image or directory.')
    parser.add_argument('--reference_dict_path', type=str, required=True, help='Path to JSON file mapping classes to reference image paths.')
    parser.add_argument('--index_to_class_mapping_path', type=str, required=True, help='Path to index-to-class JSON.')
    parser.add_argument('--model_path', type=str, required=True, help='Path to classifier model (.pth).')
    parser.add_argument('--edgeface_model_path', type=str, default='ckpts/idiap/edgeface_base.pt', help='EdgeFace model path.')
    # parser.add_argument('--edgeface_model_dir', type=str, default='ckpts/idiap', help='EdgeFace model directory.')
    parser.add_argument('--algorithm', type=str, default='yolo', choices=['mtcnn', 'yolo'], help='Face detection algorithm.')
    parser.add_argument('--accelerator', type=str, default='auto', choices=['cpu', 'gpu', 'auto'], help='Accelerator type.')
    parser.add_argument('--resolution', type=int, default=224, help='Input image resolution.')
    parser.add_argument('--similarity_threshold', type=float, default=0.6, help='Cosine similarity threshold.')
    
    args = parser.parse_args()
    main(args)

    # python src/slimface/inference/end2end_inference.py \
    # --unknown_image_path tests/test_images/dont_know.jpg \
    # --reference_dict_path tests/reference_image_data.json \
    # --index_to_class_mapping_path /content/SlimFace/ckpts/index_to_class_mapping.json \
    # --model_path /content/SlimFace/ckpts/SlimFace_efficientnet_b3_full_model.pth \
    # --edgeface_model_name edgeface_base \
    # --similarity_threshold 0.6