File size: 7,035 Bytes
b7f710c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable

import sys
import os

sys.path.insert(0, os.path.dirname(__file__))

from mtcnn_pytorch.src.get_nets import PNet, RNet, ONet
from mtcnn_pytorch.src.box_utils import nms, calibrate_box, get_image_boxes, convert_to_square
from mtcnn_pytorch.src.first_stage import run_first_stage
from mtcnn_pytorch.src.align_trans import get_reference_facial_points, warp_and_crop_face


class MTCNN():
    def __init__(self, device: str = 'cuda:0', crop_size: Tuple[int, int] = (112, 112)):

        assert device in ['cuda:0', 'cpu']
        self.device = torch.device(device)
        assert crop_size in [(112, 112), (96, 112)]
        self.crop_size = crop_size

        # change working dir to this file location to load npz files. Then switch back
        cwd = os.getcwd()
        os.chdir(os.path.dirname(__file__))

        self.pnet = PNet().to(self.device)
        self.rnet = RNet().to(self.device)
        self.onet = ONet().to(self.device)
        self.pnet.eval()
        self.rnet.eval()
        self.onet.eval()
        self.refrence = get_reference_facial_points(default_square=crop_size[0] == crop_size[1])

        self.min_face_size = 20
        self.thresholds =  [0.6,0.7,0.9]
        self.nms_thresholds = [0.7, 0.7, 0.7]
        self.factor = 0.85


        os.chdir(cwd)

    def align(self, img):
        _, landmarks = self.detect_faces(img, self.min_face_size, self.thresholds, self.nms_thresholds, self.factor)
        facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)]
        warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=self.crop_size)
        return Image.fromarray(warped_face)

    def align_multi(self, img, limit=None):
        boxes, landmarks = self.detect_faces(img, self.min_face_size, self.thresholds, self.nms_thresholds, self.factor)
        if limit:
            boxes = boxes[:limit]
            landmarks = landmarks[:limit]
        faces = []
        for landmark in landmarks:
            facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)]
            warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=self.crop_size)
            faces.append(Image.fromarray(warped_face))
        return boxes, faces

    def detect_faces(self, image, min_face_size, thresholds, nms_thresholds, factor):
        """

        Arguments:

            image: an instance of PIL.Image.

            min_face_size: a float number.

            thresholds: a list of length 3.

            nms_thresholds: a list of length 3.



        Returns:

            two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],

            bounding boxes and facial landmarks.

        """

        # BUILD AN IMAGE PYRAMID
        width, height = image.size
        min_length = min(height, width)

        min_detection_size = 12
        # factor = 0.707  # sqrt(0.5)

        # scales for scaling the image
        scales = []

        # scales the image so that
        # minimum size that we can detect equals to
        # minimum face size that we want to detect
        m = min_detection_size / min_face_size
        min_length *= m

        factor_count = 0
        while min_length > min_detection_size:
            scales.append(m * factor**factor_count)
            min_length *= factor
            factor_count += 1

        # STAGE 1

        # it will be returned
        bounding_boxes = []

        with torch.no_grad():
            # run P-Net on different scales
            for s in scales:
                boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
                bounding_boxes.append(boxes)

            # collect boxes (and offsets, and scores) from different scales
            bounding_boxes = [i for i in bounding_boxes if i is not None]
            if len(bounding_boxes) == 0:
                return [], []
            bounding_boxes = np.vstack(bounding_boxes)

            keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
            bounding_boxes = bounding_boxes[keep]

            # use offsets predicted by pnet to transform bounding boxes
            bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
            # shape [n_boxes, 5]

            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 2

            img_boxes = get_image_boxes(bounding_boxes, image, size=24)
            img_boxes = torch.FloatTensor(img_boxes).to(self.device)

            output = self.rnet(img_boxes)
            offsets = output[0].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[1].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[1])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
            offsets = offsets[keep]

            keep = nms(bounding_boxes, nms_thresholds[1])
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
            bounding_boxes = convert_to_square(bounding_boxes)
            bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])

            # STAGE 3

            img_boxes = get_image_boxes(bounding_boxes, image, size=48)
            if len(img_boxes) == 0:
                return [], []
            img_boxes = torch.FloatTensor(img_boxes).to(self.device)
            output = self.onet(img_boxes)
            landmarks = output[0].cpu().data.numpy()  # shape [n_boxes, 10]
            offsets = output[1].cpu().data.numpy()  # shape [n_boxes, 4]
            probs = output[2].cpu().data.numpy()  # shape [n_boxes, 2]

            keep = np.where(probs[:, 1] > thresholds[2])[0]
            bounding_boxes = bounding_boxes[keep]
            bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
            offsets = offsets[keep]
            landmarks = landmarks[keep]

            # compute landmark points
            width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
            height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
            xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
            landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
            landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]

            bounding_boxes = calibrate_box(bounding_boxes, offsets)
            keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
            bounding_boxes = bounding_boxes[keep]
            landmarks = landmarks[keep]

        return bounding_boxes, landmarks