File size: 6,540 Bytes
20cf96a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from ultralytics import YOLO
import cv2
import os
from PIL import Image
import numpy as np
import glob
import sys
import argparse

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))

from utils import download_yolo_face_detection

def initialize_yolo_model(yolo_model_path):
    """Initialize YOLO model."""
    if not os.path.exists(yolo_model_path):
        download_yolo_face_detection.download_yolo_face_detection_model()
    return YOLO(yolo_model_path)

def process_image_results(image, image_rgb, boxes):
    """Process bounding boxes and crop faces for a single image."""
    bounding_boxes, cropped_faces = [], []
    for box in boxes:
        x1, y1, x2, y2 = map(int, box)
        if x2 > x1 and y2 > y1 and x1 >= 0 and y1 >= 0 and x2 <= image.shape[1] and y2 <= image.shape[0]:
            bounding_boxes.append([x1, y1, x2, y2])
            cropped_face = image_rgb[y1:y2, x1:x2]
            if cropped_face.size > 0:
                pil_image = Image.fromarray(cropped_face).resize((112, 112), Image.Resampling.BILINEAR)
                cropped_faces.append(pil_image)
    return np.array(bounding_boxes, dtype=np.int32) if bounding_boxes else np.empty((0, 4), dtype=np.int32), cropped_faces

def process_batch(model, image_paths, all_bounding_boxes, all_cropped_faces):
    """Process images in batch mode using list comprehensions for efficiency."""
    # Validate and load images, filter out invalid ones
    valid_data = [(cv2.imread(path), path) for path in image_paths if os.path.exists(path)]
    valid_images, valid_image_paths = zip(*[(img, path) for img, path in valid_data if img is not None]) if valid_data else ([], [])

    # Append empty results for invalid images
    for path in image_paths:
        if not os.path.exists(path) or cv2.imread(path) is None:
            all_bounding_boxes.append(np.empty((0, 4), dtype=np.int32))
            all_cropped_faces.append([])
            print(f"Warning: {'not found' if not os.path.exists(path) else 'failed to load'} {path}. Skipping.")

    # Process valid images
    if valid_images:
        images_rgb = [cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in valid_images]
        results = model.predict(source=valid_image_paths, conf=0.25, iou=0.45, verbose=False)
        # Process results with comprehension
        [all_bounding_boxes.append(bboxes) and all_cropped_faces.append(faces) 
         for bboxes, faces in [process_image_results(img, rgb, result.boxes.xyxy.cpu().numpy()) 
                               for img, rgb, result in zip(valid_images, images_rgb, results)]]

def process_individual(model, image_paths, all_bounding_boxes, all_cropped_faces):
    """Process images individually."""
    for image_path in image_paths:
        if not os.path.exists(image_path):
            print(f"Warning: {image_path} not found. Skipping.")
            all_bounding_boxes.append(np.empty((0, 4), dtype=np.int32))
            all_cropped_faces.append([])
            continue
        
        image = cv2.imread(image_path)
        if image is None:
            print(f"Warning: Failed to load {image_path}. Skipping.")
            all_bounding_boxes.append(np.empty((0, 4), dtype=np.int32))
            all_cropped_faces.append([])
            continue
        
        image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        results = model(image_path, conf=0.25, iou=0.45, verbose=False)
        
        for result in results:
            boxes = result.boxes.xyxy.cpu().numpy()
            bboxes, faces = process_image_results(image, image_rgb, boxes)
            all_bounding_boxes.append(bboxes)
            all_cropped_faces.append(faces)

def face_yolo_detection(yolo_model_path, image_paths, use_batch=True):
    """Perform face detection using YOLOv11 with batch or individual processing."""
    model = initialize_yolo_model(yolo_model_path)
    all_bounding_boxes, all_cropped_faces = [], []
    
    if use_batch:
        process_batch(model, image_paths, all_bounding_boxes, all_cropped_faces)
    else:
        process_individual(model, image_paths, all_bounding_boxes, all_cropped_faces)
    
    # for i, (bboxes, faces) in enumerate(zip(all_bounding_boxes, all_cropped_faces)):
    #     print(f"\nImage {i+1} ({image_paths[i]}):")
    #     print("Bounding Boxes:", bboxes)
    #     print("Cropped Faces:", [f"Face {j+1}: {face}" for j, face in enumerate(faces)])
    
    return all_bounding_boxes, all_cropped_faces

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="YOLOv11 face detection")
    parser.add_argument("--use-batch", action="store_true", default=True, help="Use batch processing (default: True)")
    parser.add_argument("--image-dir", type=str, default="test/test_images", help="Input image directory")
    parser.add_argument("--yolo-model-path", type=str, default="checkpoints/yolo11_face_detection/model.pt", help="YOLO model path")
    
    args = parser.parse_args()
    
    image_paths = (glob.glob(os.path.join(args.image_dir, "*.[jJ][pP][gG]")) + 
                   glob.glob(os.path.join(args.image_dir, "*.[pP][nN][gG]"))
                )
    
    if args.yolo_model_path:
        yolo_model_path = args.yolo_model_path
    else:
        yolo_model_path = os.path.join("checkpoints", "yolo11_face_detection", "model.pt")

    # import time
    # t1 = time.time()
    # all_bounding_boxes, all_cropped_faces = face_yolo_detection(yolo_model_path, image_paths, args.use_batch)
    # print("Time taken:", time.time() - t1)

    import time
    num_runs = 50
    batch_times, individual_times = [], []
    
    # Benchmark batch processing
    for _ in range(num_runs):
        t1 = time.time()
        face_yolo_detection(yolo_model_path, image_paths, use_batch=True)
        batch_times.append(time.time() - t1)
    
    # Benchmark individual processing
    for _ in range(num_runs):
        t1 = time.time()
        face_yolo_detection(yolo_model_path, image_paths, use_batch=False)
        individual_times.append(time.time() - t1)
    
    # Calculate and print average times
    avg_batch_time = sum(batch_times) / num_runs
    avg_individual_time = sum(individual_times) / num_runs
    
    print(f"\nBenchmark Results (over {num_runs} runs):")
    print(f"Average Batch Processing Time: {avg_batch_time:.4f} seconds")
    print(f"Average Individual Processing Time: {avg_individual_time:.4f} seconds")