danhtran2mind's picture
Upload 258 files
20cf96a verified
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch.autograd import Variable
import sys
import os
sys.path.insert(0, os.path.dirname(__file__))
from mtcnn_pytorch.src.get_nets import PNet, RNet, ONet
from mtcnn_pytorch.src.box_utils import nms, calibrate_box, get_image_boxes, convert_to_square
from mtcnn_pytorch.src.first_stage import run_first_stage
from mtcnn_pytorch.src.align_trans import get_reference_facial_points, warp_and_crop_face
class MTCNN():
def __init__(self, device: str = 'cuda:0', crop_size: Tuple[int, int] = (112, 112)):
assert device in ['cuda:0', 'cpu']
self.device = torch.device(device)
assert crop_size in [(112, 112), (96, 112)]
self.crop_size = crop_size
# change working dir to this file location to load npz files. Then switch back
cwd = os.getcwd()
os.chdir(os.path.dirname(__file__))
self.pnet = PNet().to(self.device)
self.rnet = RNet().to(self.device)
self.onet = ONet().to(self.device)
self.pnet.eval()
self.rnet.eval()
self.onet.eval()
self.refrence = get_reference_facial_points(default_square=crop_size[0] == crop_size[1])
self.min_face_size = 20
self.thresholds = [0.6,0.7,0.9]
self.nms_thresholds = [0.7, 0.7, 0.7]
self.factor = 0.85
os.chdir(cwd)
def align(self, img):
_, landmarks = self.detect_faces(img, self.min_face_size, self.thresholds, self.nms_thresholds, self.factor)
facial5points = [[landmarks[0][j], landmarks[0][j + 5]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=self.crop_size)
return Image.fromarray(warped_face)
def align_multi(self, img, limit=None):
boxes, landmarks = self.detect_faces(img, self.min_face_size, self.thresholds, self.nms_thresholds, self.factor)
if limit:
boxes = boxes[:limit]
landmarks = landmarks[:limit]
faces = []
for landmark in landmarks:
facial5points = [[landmark[j], landmark[j + 5]] for j in range(5)]
warped_face = warp_and_crop_face(np.array(img), facial5points, self.refrence, crop_size=self.crop_size)
faces.append(Image.fromarray(warped_face))
return boxes, faces
def detect_faces(self, image, min_face_size, thresholds, nms_thresholds, factor):
"""
Arguments:
image: an instance of PIL.Image.
min_face_size: a float number.
thresholds: a list of length 3.
nms_thresholds: a list of length 3.
Returns:
two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10],
bounding boxes and facial landmarks.
"""
# BUILD AN IMAGE PYRAMID
width, height = image.size
min_length = min(height, width)
min_detection_size = 12
# factor = 0.707 # sqrt(0.5)
# scales for scaling the image
scales = []
# scales the image so that
# minimum size that we can detect equals to
# minimum face size that we want to detect
m = min_detection_size / min_face_size
min_length *= m
factor_count = 0
while min_length > min_detection_size:
scales.append(m * factor**factor_count)
min_length *= factor
factor_count += 1
# STAGE 1
# it will be returned
bounding_boxes = []
with torch.no_grad():
# run P-Net on different scales
for s in scales:
boxes = run_first_stage(image, self.pnet, scale=s, threshold=thresholds[0])
bounding_boxes.append(boxes)
# collect boxes (and offsets, and scores) from different scales
bounding_boxes = [i for i in bounding_boxes if i is not None]
if len(bounding_boxes) == 0:
return [], []
bounding_boxes = np.vstack(bounding_boxes)
keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0])
bounding_boxes = bounding_boxes[keep]
# use offsets predicted by pnet to transform bounding boxes
bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:])
# shape [n_boxes, 5]
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 2
img_boxes = get_image_boxes(bounding_boxes, image, size=24)
img_boxes = torch.FloatTensor(img_boxes).to(self.device)
output = self.rnet(img_boxes)
offsets = output[0].cpu().data.numpy() # shape [n_boxes, 4]
probs = output[1].cpu().data.numpy() # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[1])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
offsets = offsets[keep]
keep = nms(bounding_boxes, nms_thresholds[1])
bounding_boxes = bounding_boxes[keep]
bounding_boxes = calibrate_box(bounding_boxes, offsets[keep])
bounding_boxes = convert_to_square(bounding_boxes)
bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4])
# STAGE 3
img_boxes = get_image_boxes(bounding_boxes, image, size=48)
if len(img_boxes) == 0:
return [], []
img_boxes = torch.FloatTensor(img_boxes).to(self.device)
output = self.onet(img_boxes)
landmarks = output[0].cpu().data.numpy() # shape [n_boxes, 10]
offsets = output[1].cpu().data.numpy() # shape [n_boxes, 4]
probs = output[2].cpu().data.numpy() # shape [n_boxes, 2]
keep = np.where(probs[:, 1] > thresholds[2])[0]
bounding_boxes = bounding_boxes[keep]
bounding_boxes[:, 4] = probs[keep, 1].reshape((-1, ))
offsets = offsets[keep]
landmarks = landmarks[keep]
# compute landmark points
width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0
height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0
xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1]
landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5]
landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10]
bounding_boxes = calibrate_box(bounding_boxes, offsets)
keep = nms(bounding_boxes, nms_thresholds[2], mode='min')
bounding_boxes = bounding_boxes[keep]
landmarks = landmarks[keep]
return bounding_boxes, landmarks