import os import sys from PIL import Image # Append the path to the inference script's directory sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'slimface', 'inference'))) from end2end_inference import cinference_and_confirm def run_inference(image, reference_dict_path, index_to_class_mapping_path, model_path, edgeface_model_name="edgeface_base", edgeface_model_dir="ckpts/idiap", algorithm="yolo", accelerator="auto", resolution=224, similarity_threshold=0.6): # Save uploaded image temporarily in apps/gradio_app/ temp_image_path = os.path.join(os.path.dirname(__file__), "temp_image.jpg") image.save(temp_image_path) # Create args object to mimic command-line arguments class Args: def __init__(self): self.unknown_image_path = temp_image_path self.reference_dict_path = reference_dict_path.name if reference_dict_path else None self.index_to_class_mapping_path = index_to_class_mapping_path.name if index_to_class_mapping_path else None self.model_path = model_path.name if model_path else None self.edgeface_model_name = edgeface_model_name self.edgeface_model_dir = edgeface_model_dir self.algorithm = algorithm self.accelerator = accelerator self.resolution = resolution self.similarity_threshold = similarity_threshold args = Args() # Validate inputs if not all([args.reference_dict_path, args.index_to_class_mapping_path, args.model_path]): return "Error: Please provide all required files (reference dict, index-to-class mapping, and model)." try: # Call the inference function from end2end_inference.py results = cinference_and_confirm(args) # Format output output = "" for result in results: output += f"Image: {result['image_path']}\n" output += f"Predicted Class: {result['predicted_class']}\n" output += f"Confidence: {result['confidence']:.4f}\n" output += f"Similarity: {result.get('similarity', 'N/A'):.4f}\n" output += f"Confirmed: {result.get('confirmed', 'N/A')}\n\n" return output except Exception as e: return f"Error: {str(e)}" finally: # Clean up temporary image if os.path.exists(temp_image_path): os.remove(temp_image_path)