import os import sys import torch import torchvision.transforms as transforms from PIL import Image import argparse import warnings import json # Append necessary paths sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "third_party"))) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from edgeface.face_alignment import align as edgeface_align from edgeface.backbones import get_model from models.detection_models import align as align_classifier def preprocess_image(image_path, algorithm='yolo', resolution=224): try: with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning, message=".*rcond.*") aligned_result = align_classifier.get_aligned_face([image_path], algorithm=algorithm) aligned_image = aligned_result[0][1] if aligned_result and len(aligned_result) > 0 else Image.open(image_path).convert('RGB') aligned_image = aligned_image.resize((resolution, resolution), Image.Resampling.LANCZOS) except Exception as e: print(f"Error processing {image_path}: {e}") aligned_image = Image.open(image_path).convert('RGB').resize((resolution, resolution), Image.Resampling.LANCZOS) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) return transform(aligned_image).unsqueeze(0) def load_model(model_path): try: model = torch.jit.load(model_path, map_location=torch.device('cpu')) model.eval() return model except Exception as e: raise RuntimeError(f"Failed to load model from {model_path}: {e}") def load_class_mapping(index_to_class_mapping_path): try: with open(index_to_class_mapping_path, 'r') as f: idx_to_class = json.load(f) return {int(k): v for k, v in idx_to_class.items()} except Exception as e: raise ValueError(f"Error loading class mapping: {e}") def get_edgeface_embeddings(image_path, model_path): """Get EdgeFace embeddings for a given image.""" model_name = os.path.basename(model_path).split('.')[0] model = get_model(model_name) model.load_state_dict(torch.load(model_path, map_location='cpu')) model.eval() transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) aligned_result = edgeface_align.get_aligned_face(image_path, algorithm='yolo') if not aligned_result: raise ValueError(f"Face alignment failed for {image_path}") with torch.no_grad(): return model(transform(aligned_result[0][1]).unsqueeze(0)) # def inference_and_confirm(args): # idx_to_class = load_class_mapping(args.index_to_class_mapping_path) # classifier_model = load_model(args.model_path) # device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu') # classifier_model = classifier_model.to(device) # # Load reference images mapping from JSON file # try: # with open(args.reference_dict_path, 'r') as f: # reference_images = json.load(f) # except Exception as e: # raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}") # # Handle single image or directory # image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [ # os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path) # if img.endswith(('.jpg', '.jpeg', '.png')) # ] # results = [] # with torch.no_grad(): # for image_path in image_paths: # image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device) # output = classifier_model(image_tensor) # probabilities = torch.softmax(output, dim=1) # confidence, predicted = torch.max(probabilities, 1) # predicted_class = idx_to_class.get(predicted.item(), "Unknown") # result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()} # # Validate with EdgeFace embeddings if reference image exists # reference_image_path = reference_images.get(predicted_class) # if reference_image_path and os.path.exists(reference_image_path): # unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path) # reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path) # similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item() # result['similarity'] = similarity # result['confirmed'] = similarity >= args.similarity_threshold # else: # raise ValueError(f("Reference image for class '{predicted_class}' " # "not found in {args.reference_dict_path}")) # results.append(result) # # {'image_path': 'tests/test_images/dont_know.jpg', 'predicted_class': 'Robert Downey Jr', # # 'confidence': 0.9292604923248291, 'similarity': 0.603316068649292, 'confirmed': True} return results def inference_and_confirm(args): idx_to_class = load_class_mapping(args.index_to_class_mapping_path) classifier_model = load_model(args.model_path) device = torch.device('cuda' if torch.cuda.is_available() and args.accelerator == 'gpu' else 'cpu') classifier_model = classifier_model.to(device) # Load reference images mapping from JSON file try: with open(args.reference_dict_path, 'r') as f: reference_images = json.load(f) except Exception as e: raise ValueError(f"Error loading reference images from {args.reference_dict_path}: {e}") # Handle single image or directory image_paths = [args.unknown_image_path] if args.unknown_image_path.endswith(('.jpg', '.jpeg', '.png')) else [ os.path.join(args.unknown_image_path, img) for img in os.listdir(args.unknown_image_path) if img.endswith(('.jpg', '.jpeg', '.png')) ] results = [] with torch.no_grad(): for image_path in image_paths: image_tensor = preprocess_image(image_path, args.algorithm, args.resolution).to(device) output = classifier_model(image_tensor) probabilities = torch.softmax(output, dim=1) confidence, predicted = torch.max(probabilities, 1) predicted_class = idx_to_class.get(predicted.item(), "Unknown") result = {'image_path': image_path, 'predicted_class': predicted_class, 'confidence': confidence.item()} # Validate with EdgeFace embeddings if reference image exists reference_image_path = reference_images.get(predicted_class) if reference_image_path and os.path.exists(reference_image_path): unknown_embedding = get_edgeface_embeddings(image_path, args.edgeface_model_path) reference_embedding = get_edgeface_embeddings(reference_image_path, args.edgeface_model_path) similarity = torch.nn.functional.cosine_similarity(unknown_embedding, reference_embedding).item() result['similarity'] = similarity result['confirmed'] = similarity >= args.similarity_threshold else: result['similarity'] = None result['confirmed'] = False results.append(result) return results def main(args): results = inference_and_confirm(args) for result in results: print(f"Image: {result['image_path']}, Predicted Class: {result['predicted_class']}, " f"Confidence: {result['confidence']:.4f}, Similarity: {result.get('similarity', 'N/A'):.4f}, " f"Confirmed: {result.get('confirmed', 'N/A')}") if __name__ == "__main__": parser = argparse.ArgumentParser(description='Face classification with EdgeFace embedding validation.') parser.add_argument('--unknown_image_path', type=str, required=True, help='Path to image or directory.') parser.add_argument('--reference_dict_path', type=str, required=True, help='Path to JSON file mapping classes to reference image paths.') parser.add_argument('--index_to_class_mapping_path', type=str, required=True, help='Path to index-to-class JSON.') parser.add_argument('--model_path', type=str, required=True, help='Path to classifier model (.pth).') parser.add_argument('--edgeface_model_path', type=str, default='ckpts/idiap/edgeface_base.pt', help='EdgeFace model path.') # parser.add_argument('--edgeface_model_dir', type=str, default='ckpts/idiap', help='EdgeFace model directory.') parser.add_argument('--algorithm', type=str, default='yolo', choices=['mtcnn', 'yolo'], help='Face detection algorithm.') parser.add_argument('--accelerator', type=str, default='auto', choices=['cpu', 'gpu', 'auto'], help='Accelerator type.') parser.add_argument('--resolution', type=int, default=224, help='Input image resolution.') parser.add_argument('--similarity_threshold', type=float, default=0.6, help='Cosine similarity threshold.') args = parser.parse_args() main(args) # python src/slimface/inference/end2end_inference.py \ # --unknown_image_path tests/test_images/dont_know.jpg \ # --reference_dict_path tests/reference_image_data.json \ # --index_to_class_mapping_path /content/SlimFace/ckpts/index_to_class_mapping.json \ # --model_path /content/SlimFace/ckpts/SlimFace_efficientnet_b3_full_model.pth \ # --edgeface_model_name edgeface_base \ # --similarity_threshold 0.6