Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch import Tensor | |
| from torch.autograd import Function | |
| from torch.autograd.function import once_differentiable | |
| from torch.nn.modules.utils import _pair, _single | |
| from annotator.uniformer.mmcv.utils import deprecated_api_warning | |
| from ..cnn import CONV_LAYERS | |
| from ..utils import ext_loader, print_log | |
| ext_module = ext_loader.load_ext('_ext', [ | |
| 'deform_conv_forward', 'deform_conv_backward_input', | |
| 'deform_conv_backward_parameters' | |
| ]) | |
| class DeformConv2dFunction(Function): | |
| def symbolic(g, | |
| input, | |
| offset, | |
| weight, | |
| stride, | |
| padding, | |
| dilation, | |
| groups, | |
| deform_groups, | |
| bias=False, | |
| im2col_step=32): | |
| return g.op( | |
| 'mmcv::MMCVDeformConv2d', | |
| input, | |
| offset, | |
| weight, | |
| stride_i=stride, | |
| padding_i=padding, | |
| dilation_i=dilation, | |
| groups_i=groups, | |
| deform_groups_i=deform_groups, | |
| bias_i=bias, | |
| im2col_step_i=im2col_step) | |
| def forward(ctx, | |
| input, | |
| offset, | |
| weight, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| groups=1, | |
| deform_groups=1, | |
| bias=False, | |
| im2col_step=32): | |
| if input is not None and input.dim() != 4: | |
| raise ValueError( | |
| f'Expected 4D tensor as input, got {input.dim()}D tensor \ | |
| instead.') | |
| assert bias is False, 'Only support bias is False.' | |
| ctx.stride = _pair(stride) | |
| ctx.padding = _pair(padding) | |
| ctx.dilation = _pair(dilation) | |
| ctx.groups = groups | |
| ctx.deform_groups = deform_groups | |
| ctx.im2col_step = im2col_step | |
| # When pytorch version >= 1.6.0, amp is adopted for fp16 mode; | |
| # amp won't cast the type of model (float32), but "offset" is cast | |
| # to float16 by nn.Conv2d automatically, leading to the type | |
| # mismatch with input (when it is float32) or weight. | |
| # The flag for whether to use fp16 or amp is the type of "offset", | |
| # we cast weight and input to temporarily support fp16 and amp | |
| # whatever the pytorch version is. | |
| input = input.type_as(offset) | |
| weight = weight.type_as(input) | |
| ctx.save_for_backward(input, offset, weight) | |
| output = input.new_empty( | |
| DeformConv2dFunction._output_size(ctx, input, weight)) | |
| ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones | |
| cur_im2col_step = min(ctx.im2col_step, input.size(0)) | |
| assert (input.size(0) % | |
| cur_im2col_step) == 0, 'im2col step must divide batchsize' | |
| ext_module.deform_conv_forward( | |
| input, | |
| weight, | |
| offset, | |
| output, | |
| ctx.bufs_[0], | |
| ctx.bufs_[1], | |
| kW=weight.size(3), | |
| kH=weight.size(2), | |
| dW=ctx.stride[1], | |
| dH=ctx.stride[0], | |
| padW=ctx.padding[1], | |
| padH=ctx.padding[0], | |
| dilationW=ctx.dilation[1], | |
| dilationH=ctx.dilation[0], | |
| group=ctx.groups, | |
| deformable_group=ctx.deform_groups, | |
| im2col_step=cur_im2col_step) | |
| return output | |
| def backward(ctx, grad_output): | |
| input, offset, weight = ctx.saved_tensors | |
| grad_input = grad_offset = grad_weight = None | |
| cur_im2col_step = min(ctx.im2col_step, input.size(0)) | |
| assert (input.size(0) % cur_im2col_step | |
| ) == 0, 'batch size must be divisible by im2col_step' | |
| grad_output = grad_output.contiguous() | |
| if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
| grad_input = torch.zeros_like(input) | |
| grad_offset = torch.zeros_like(offset) | |
| ext_module.deform_conv_backward_input( | |
| input, | |
| offset, | |
| grad_output, | |
| grad_input, | |
| grad_offset, | |
| weight, | |
| ctx.bufs_[0], | |
| kW=weight.size(3), | |
| kH=weight.size(2), | |
| dW=ctx.stride[1], | |
| dH=ctx.stride[0], | |
| padW=ctx.padding[1], | |
| padH=ctx.padding[0], | |
| dilationW=ctx.dilation[1], | |
| dilationH=ctx.dilation[0], | |
| group=ctx.groups, | |
| deformable_group=ctx.deform_groups, | |
| im2col_step=cur_im2col_step) | |
| if ctx.needs_input_grad[2]: | |
| grad_weight = torch.zeros_like(weight) | |
| ext_module.deform_conv_backward_parameters( | |
| input, | |
| offset, | |
| grad_output, | |
| grad_weight, | |
| ctx.bufs_[0], | |
| ctx.bufs_[1], | |
| kW=weight.size(3), | |
| kH=weight.size(2), | |
| dW=ctx.stride[1], | |
| dH=ctx.stride[0], | |
| padW=ctx.padding[1], | |
| padH=ctx.padding[0], | |
| dilationW=ctx.dilation[1], | |
| dilationH=ctx.dilation[0], | |
| group=ctx.groups, | |
| deformable_group=ctx.deform_groups, | |
| scale=1, | |
| im2col_step=cur_im2col_step) | |
| return grad_input, grad_offset, grad_weight, \ | |
| None, None, None, None, None, None, None | |
| def _output_size(ctx, input, weight): | |
| channels = weight.size(0) | |
| output_size = (input.size(0), channels) | |
| for d in range(input.dim() - 2): | |
| in_size = input.size(d + 2) | |
| pad = ctx.padding[d] | |
| kernel = ctx.dilation[d] * (weight.size(d + 2) - 1) + 1 | |
| stride_ = ctx.stride[d] | |
| output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) | |
| if not all(map(lambda s: s > 0, output_size)): | |
| raise ValueError( | |
| 'convolution input is too small (output would be ' + | |
| 'x'.join(map(str, output_size)) + ')') | |
| return output_size | |
| deform_conv2d = DeformConv2dFunction.apply | |
| class DeformConv2d(nn.Module): | |
| r"""Deformable 2D convolution. | |
| Applies a deformable 2D convolution over an input signal composed of | |
| several input planes. DeformConv2d was described in the paper | |
| `Deformable Convolutional Networks | |
| <https://arxiv.org/pdf/1703.06211.pdf>`_ | |
| Note: | |
| The argument ``im2col_step`` was added in version 1.3.17, which means | |
| number of samples processed by the ``im2col_cuda_kernel`` per call. | |
| It enables users to define ``batch_size`` and ``im2col_step`` more | |
| flexibly and solved `issue mmcv#1440 | |
| <https://github.com/open-mmlab/mmcv/issues/1440>`_. | |
| Args: | |
| in_channels (int): Number of channels in the input image. | |
| out_channels (int): Number of channels produced by the convolution. | |
| kernel_size(int, tuple): Size of the convolving kernel. | |
| stride(int, tuple): Stride of the convolution. Default: 1. | |
| padding (int or tuple): Zero-padding added to both sides of the input. | |
| Default: 0. | |
| dilation (int or tuple): Spacing between kernel elements. Default: 1. | |
| groups (int): Number of blocked connections from input. | |
| channels to output channels. Default: 1. | |
| deform_groups (int): Number of deformable group partitions. | |
| bias (bool): If True, adds a learnable bias to the output. | |
| Default: False. | |
| im2col_step (int): Number of samples processed by im2col_cuda_kernel | |
| per call. It will work when ``batch_size`` > ``im2col_step``, but | |
| ``batch_size`` must be divisible by ``im2col_step``. Default: 32. | |
| `New in version 1.3.17.` | |
| """ | |
| def __init__(self, | |
| in_channels: int, | |
| out_channels: int, | |
| kernel_size: Union[int, Tuple[int, ...]], | |
| stride: Union[int, Tuple[int, ...]] = 1, | |
| padding: Union[int, Tuple[int, ...]] = 0, | |
| dilation: Union[int, Tuple[int, ...]] = 1, | |
| groups: int = 1, | |
| deform_groups: int = 1, | |
| bias: bool = False, | |
| im2col_step: int = 32) -> None: | |
| super(DeformConv2d, self).__init__() | |
| assert not bias, \ | |
| f'bias={bias} is not supported in DeformConv2d.' | |
| assert in_channels % groups == 0, \ | |
| f'in_channels {in_channels} cannot be divisible by groups {groups}' | |
| assert out_channels % groups == 0, \ | |
| f'out_channels {out_channels} cannot be divisible by groups \ | |
| {groups}' | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.kernel_size = _pair(kernel_size) | |
| self.stride = _pair(stride) | |
| self.padding = _pair(padding) | |
| self.dilation = _pair(dilation) | |
| self.groups = groups | |
| self.deform_groups = deform_groups | |
| self.im2col_step = im2col_step | |
| # enable compatibility with nn.Conv2d | |
| self.transposed = False | |
| self.output_padding = _single(0) | |
| # only weight, no bias | |
| self.weight = nn.Parameter( | |
| torch.Tensor(out_channels, in_channels // self.groups, | |
| *self.kernel_size)) | |
| self.reset_parameters() | |
| def reset_parameters(self): | |
| # switch the initialization of `self.weight` to the standard kaiming | |
| # method described in `Delving deep into rectifiers: Surpassing | |
| # human-level performance on ImageNet classification` - He, K. et al. | |
| # (2015), using a uniform distribution | |
| nn.init.kaiming_uniform_(self.weight, nonlinearity='relu') | |
| def forward(self, x: Tensor, offset: Tensor) -> Tensor: | |
| """Deformable Convolutional forward function. | |
| Args: | |
| x (Tensor): Input feature, shape (B, C_in, H_in, W_in) | |
| offset (Tensor): Offset for deformable convolution, shape | |
| (B, deform_groups*kernel_size[0]*kernel_size[1]*2, | |
| H_out, W_out), H_out, W_out are equal to the output's. | |
| An offset is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`. | |
| The spatial arrangement is like: | |
| .. code:: text | |
| (x0, y0) (x1, y1) (x2, y2) | |
| (x3, y3) (x4, y4) (x5, y5) | |
| (x6, y6) (x7, y7) (x8, y8) | |
| Returns: | |
| Tensor: Output of the layer. | |
| """ | |
| # To fix an assert error in deform_conv_cuda.cpp:128 | |
| # input image is smaller than kernel | |
| input_pad = (x.size(2) < self.kernel_size[0]) or (x.size(3) < | |
| self.kernel_size[1]) | |
| if input_pad: | |
| pad_h = max(self.kernel_size[0] - x.size(2), 0) | |
| pad_w = max(self.kernel_size[1] - x.size(3), 0) | |
| x = F.pad(x, (0, pad_w, 0, pad_h), 'constant', 0).contiguous() | |
| offset = F.pad(offset, (0, pad_w, 0, pad_h), 'constant', 0) | |
| offset = offset.contiguous() | |
| out = deform_conv2d(x, offset, self.weight, self.stride, self.padding, | |
| self.dilation, self.groups, self.deform_groups, | |
| False, self.im2col_step) | |
| if input_pad: | |
| out = out[:, :, :out.size(2) - pad_h, :out.size(3) - | |
| pad_w].contiguous() | |
| return out | |
| def __repr__(self): | |
| s = self.__class__.__name__ | |
| s += f'(in_channels={self.in_channels},\n' | |
| s += f'out_channels={self.out_channels},\n' | |
| s += f'kernel_size={self.kernel_size},\n' | |
| s += f'stride={self.stride},\n' | |
| s += f'padding={self.padding},\n' | |
| s += f'dilation={self.dilation},\n' | |
| s += f'groups={self.groups},\n' | |
| s += f'deform_groups={self.deform_groups},\n' | |
| # bias is not supported in DeformConv2d. | |
| s += 'bias=False)' | |
| return s | |
| class DeformConv2dPack(DeformConv2d): | |
| """A Deformable Conv Encapsulation that acts as normal Conv layers. | |
| The offset tensor is like `[y0, x0, y1, x1, y2, x2, ..., y8, x8]`. | |
| The spatial arrangement is like: | |
| .. code:: text | |
| (x0, y0) (x1, y1) (x2, y2) | |
| (x3, y3) (x4, y4) (x5, y5) | |
| (x6, y6) (x7, y7) (x8, y8) | |
| Args: | |
| in_channels (int): Same as nn.Conv2d. | |
| out_channels (int): Same as nn.Conv2d. | |
| kernel_size (int or tuple[int]): Same as nn.Conv2d. | |
| stride (int or tuple[int]): Same as nn.Conv2d. | |
| padding (int or tuple[int]): Same as nn.Conv2d. | |
| dilation (int or tuple[int]): Same as nn.Conv2d. | |
| groups (int): Same as nn.Conv2d. | |
| bias (bool or str): If specified as `auto`, it will be decided by the | |
| norm_cfg. Bias will be set as True if norm_cfg is None, otherwise | |
| False. | |
| """ | |
| _version = 2 | |
| def __init__(self, *args, **kwargs): | |
| super(DeformConv2dPack, self).__init__(*args, **kwargs) | |
| self.conv_offset = nn.Conv2d( | |
| self.in_channels, | |
| self.deform_groups * 2 * self.kernel_size[0] * self.kernel_size[1], | |
| kernel_size=self.kernel_size, | |
| stride=_pair(self.stride), | |
| padding=_pair(self.padding), | |
| dilation=_pair(self.dilation), | |
| bias=True) | |
| self.init_offset() | |
| def init_offset(self): | |
| self.conv_offset.weight.data.zero_() | |
| self.conv_offset.bias.data.zero_() | |
| def forward(self, x): | |
| offset = self.conv_offset(x) | |
| return deform_conv2d(x, offset, self.weight, self.stride, self.padding, | |
| self.dilation, self.groups, self.deform_groups, | |
| False, self.im2col_step) | |
| def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, | |
| missing_keys, unexpected_keys, error_msgs): | |
| version = local_metadata.get('version', None) | |
| if version is None or version < 2: | |
| # the key is different in early versions | |
| # In version < 2, DeformConvPack loads previous benchmark models. | |
| if (prefix + 'conv_offset.weight' not in state_dict | |
| and prefix[:-1] + '_offset.weight' in state_dict): | |
| state_dict[prefix + 'conv_offset.weight'] = state_dict.pop( | |
| prefix[:-1] + '_offset.weight') | |
| if (prefix + 'conv_offset.bias' not in state_dict | |
| and prefix[:-1] + '_offset.bias' in state_dict): | |
| state_dict[prefix + | |
| 'conv_offset.bias'] = state_dict.pop(prefix[:-1] + | |
| '_offset.bias') | |
| if version is not None and version > 1: | |
| print_log( | |
| f'DeformConv2dPack {prefix.rstrip(".")} is upgraded to ' | |
| 'version 2.', | |
| logger='root') | |
| super()._load_from_state_dict(state_dict, prefix, local_metadata, | |
| strict, missing_keys, unexpected_keys, | |
| error_msgs) | |