Spaces:
Runtime error
Runtime error
| import torch | |
| from torch.autograd import Function | |
| from ..utils import ext_loader | |
| ext_module = ext_loader.load_ext( | |
| '_ext', ['gather_points_forward', 'gather_points_backward']) | |
| class GatherPoints(Function): | |
| """Gather points with given index.""" | |
| def forward(ctx, features: torch.Tensor, | |
| indices: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Args: | |
| features (Tensor): (B, C, N) features to gather. | |
| indices (Tensor): (B, M) where M is the number of points. | |
| Returns: | |
| Tensor: (B, C, M) where M is the number of points. | |
| """ | |
| assert features.is_contiguous() | |
| assert indices.is_contiguous() | |
| B, npoint = indices.size() | |
| _, C, N = features.size() | |
| output = torch.cuda.FloatTensor(B, C, npoint) | |
| ext_module.gather_points_forward( | |
| features, indices, output, b=B, c=C, n=N, npoints=npoint) | |
| ctx.for_backwards = (indices, C, N) | |
| if torch.__version__ != 'parrots': | |
| ctx.mark_non_differentiable(indices) | |
| return output | |
| def backward(ctx, grad_out): | |
| idx, C, N = ctx.for_backwards | |
| B, npoint = idx.size() | |
| grad_features = torch.cuda.FloatTensor(B, C, N).zero_() | |
| grad_out_data = grad_out.data.contiguous() | |
| ext_module.gather_points_backward( | |
| grad_out_data, | |
| idx, | |
| grad_features.data, | |
| b=B, | |
| c=C, | |
| n=N, | |
| npoints=npoint) | |
| return grad_features, None | |
| gather_points = GatherPoints.apply | |