Spaces:
Runtime error
Runtime error
| import copy | |
| import platform | |
| import random | |
| from functools import partial | |
| import numpy as np | |
| from annotator.uniformer.mmcv.parallel import collate | |
| from annotator.uniformer.mmcv.runner import get_dist_info | |
| from annotator.uniformer.mmcv.utils import Registry, build_from_cfg | |
| from annotator.uniformer.mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader | |
| from torch.utils.data import DistributedSampler | |
| if platform.system() != 'Windows': | |
| # https://github.com/pytorch/pytorch/issues/973 | |
| import resource | |
| rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) | |
| hard_limit = rlimit[1] | |
| soft_limit = min(4096, hard_limit) | |
| resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) | |
| DATASETS = Registry('dataset') | |
| PIPELINES = Registry('pipeline') | |
| def _concat_dataset(cfg, default_args=None): | |
| """Build :obj:`ConcatDataset by.""" | |
| from .dataset_wrappers import ConcatDataset | |
| img_dir = cfg['img_dir'] | |
| ann_dir = cfg.get('ann_dir', None) | |
| split = cfg.get('split', None) | |
| num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1 | |
| if ann_dir is not None: | |
| num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1 | |
| else: | |
| num_ann_dir = 0 | |
| if split is not None: | |
| num_split = len(split) if isinstance(split, (list, tuple)) else 1 | |
| else: | |
| num_split = 0 | |
| if num_img_dir > 1: | |
| assert num_img_dir == num_ann_dir or num_ann_dir == 0 | |
| assert num_img_dir == num_split or num_split == 0 | |
| else: | |
| assert num_split == num_ann_dir or num_ann_dir <= 1 | |
| num_dset = max(num_split, num_img_dir) | |
| datasets = [] | |
| for i in range(num_dset): | |
| data_cfg = copy.deepcopy(cfg) | |
| if isinstance(img_dir, (list, tuple)): | |
| data_cfg['img_dir'] = img_dir[i] | |
| if isinstance(ann_dir, (list, tuple)): | |
| data_cfg['ann_dir'] = ann_dir[i] | |
| if isinstance(split, (list, tuple)): | |
| data_cfg['split'] = split[i] | |
| datasets.append(build_dataset(data_cfg, default_args)) | |
| return ConcatDataset(datasets) | |
| def build_dataset(cfg, default_args=None): | |
| """Build datasets.""" | |
| from .dataset_wrappers import ConcatDataset, RepeatDataset | |
| if isinstance(cfg, (list, tuple)): | |
| dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) | |
| elif cfg['type'] == 'RepeatDataset': | |
| dataset = RepeatDataset( | |
| build_dataset(cfg['dataset'], default_args), cfg['times']) | |
| elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance( | |
| cfg.get('split', None), (list, tuple)): | |
| dataset = _concat_dataset(cfg, default_args) | |
| else: | |
| dataset = build_from_cfg(cfg, DATASETS, default_args) | |
| return dataset | |
| def build_dataloader(dataset, | |
| samples_per_gpu, | |
| workers_per_gpu, | |
| num_gpus=1, | |
| dist=True, | |
| shuffle=True, | |
| seed=None, | |
| drop_last=False, | |
| pin_memory=True, | |
| dataloader_type='PoolDataLoader', | |
| **kwargs): | |
| """Build PyTorch DataLoader. | |
| In distributed training, each GPU/process has a dataloader. | |
| In non-distributed training, there is only one dataloader for all GPUs. | |
| Args: | |
| dataset (Dataset): A PyTorch dataset. | |
| samples_per_gpu (int): Number of training samples on each GPU, i.e., | |
| batch size of each GPU. | |
| workers_per_gpu (int): How many subprocesses to use for data loading | |
| for each GPU. | |
| num_gpus (int): Number of GPUs. Only used in non-distributed training. | |
| dist (bool): Distributed training/test or not. Default: True. | |
| shuffle (bool): Whether to shuffle the data at every epoch. | |
| Default: True. | |
| seed (int | None): Seed to be used. Default: None. | |
| drop_last (bool): Whether to drop the last incomplete batch in epoch. | |
| Default: False | |
| pin_memory (bool): Whether to use pin_memory in DataLoader. | |
| Default: True | |
| dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader' | |
| kwargs: any keyword argument to be used to initialize DataLoader | |
| Returns: | |
| DataLoader: A PyTorch dataloader. | |
| """ | |
| rank, world_size = get_dist_info() | |
| if dist: | |
| sampler = DistributedSampler( | |
| dataset, world_size, rank, shuffle=shuffle) | |
| shuffle = False | |
| batch_size = samples_per_gpu | |
| num_workers = workers_per_gpu | |
| else: | |
| sampler = None | |
| batch_size = num_gpus * samples_per_gpu | |
| num_workers = num_gpus * workers_per_gpu | |
| init_fn = partial( | |
| worker_init_fn, num_workers=num_workers, rank=rank, | |
| seed=seed) if seed is not None else None | |
| assert dataloader_type in ( | |
| 'DataLoader', | |
| 'PoolDataLoader'), f'unsupported dataloader {dataloader_type}' | |
| if dataloader_type == 'PoolDataLoader': | |
| dataloader = PoolDataLoader | |
| elif dataloader_type == 'DataLoader': | |
| dataloader = DataLoader | |
| data_loader = dataloader( | |
| dataset, | |
| batch_size=batch_size, | |
| sampler=sampler, | |
| num_workers=num_workers, | |
| collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), | |
| pin_memory=pin_memory, | |
| shuffle=shuffle, | |
| worker_init_fn=init_fn, | |
| drop_last=drop_last, | |
| **kwargs) | |
| return data_loader | |
| def worker_init_fn(worker_id, num_workers, rank, seed): | |
| """Worker init func for dataloader. | |
| The seed of each worker equals to num_worker * rank + worker_id + user_seed | |
| Args: | |
| worker_id (int): Worker id. | |
| num_workers (int): Number of workers. | |
| rank (int): The rank of current process. | |
| seed (int): The random seed to use. | |
| """ | |
| worker_seed = num_workers * rank + worker_id + seed | |
| np.random.seed(worker_seed) | |
| random.seed(worker_seed) | |