Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.utils.checkpoint as cp | |
| from annotator.uniformer.mmcv.cnn import (ConvModule, build_conv_layer, build_norm_layer, | |
| constant_init, kaiming_init) | |
| from annotator.uniformer.mmcv.runner import load_checkpoint | |
| from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm | |
| from annotator.uniformer.mmseg.utils import get_root_logger | |
| from ..builder import BACKBONES | |
| class GlobalContextExtractor(nn.Module): | |
| """Global Context Extractor for CGNet. | |
| This class is employed to refine the joint feature of both local feature | |
| and surrounding context. | |
| Args: | |
| channel (int): Number of input feature channels. | |
| reduction (int): Reductions for global context extractor. Default: 16. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| """ | |
| def __init__(self, channel, reduction=16, with_cp=False): | |
| super(GlobalContextExtractor, self).__init__() | |
| self.channel = channel | |
| self.reduction = reduction | |
| assert reduction >= 1 and channel >= reduction | |
| self.with_cp = with_cp | |
| self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
| self.fc = nn.Sequential( | |
| nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), | |
| nn.Linear(channel // reduction, channel), nn.Sigmoid()) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| num_batch, num_channel = x.size()[:2] | |
| y = self.avg_pool(x).view(num_batch, num_channel) | |
| y = self.fc(y).view(num_batch, num_channel, 1, 1) | |
| return x * y | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class ContextGuidedBlock(nn.Module): | |
| """Context Guided Block for CGNet. | |
| This class consists of four components: local feature extractor, | |
| surrounding feature extractor, joint feature extractor and global | |
| context extractor. | |
| Args: | |
| in_channels (int): Number of input feature channels. | |
| out_channels (int): Number of output feature channels. | |
| dilation (int): Dilation rate for surrounding context extractor. | |
| Default: 2. | |
| reduction (int): Reduction for global context extractor. Default: 16. | |
| skip_connect (bool): Add input to output or not. Default: True. | |
| downsample (bool): Downsample the input to 1/2 or not. Default: False. | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN', requires_grad=True). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='PReLU'). | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| out_channels, | |
| dilation=2, | |
| reduction=16, | |
| skip_connect=True, | |
| downsample=False, | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| act_cfg=dict(type='PReLU'), | |
| with_cp=False): | |
| super(ContextGuidedBlock, self).__init__() | |
| self.with_cp = with_cp | |
| self.downsample = downsample | |
| channels = out_channels if downsample else out_channels // 2 | |
| if 'type' in act_cfg and act_cfg['type'] == 'PReLU': | |
| act_cfg['num_parameters'] = channels | |
| kernel_size = 3 if downsample else 1 | |
| stride = 2 if downsample else 1 | |
| padding = (kernel_size - 1) // 2 | |
| self.conv1x1 = ConvModule( | |
| in_channels, | |
| channels, | |
| kernel_size, | |
| stride, | |
| padding, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg) | |
| self.f_loc = build_conv_layer( | |
| conv_cfg, | |
| channels, | |
| channels, | |
| kernel_size=3, | |
| padding=1, | |
| groups=channels, | |
| bias=False) | |
| self.f_sur = build_conv_layer( | |
| conv_cfg, | |
| channels, | |
| channels, | |
| kernel_size=3, | |
| padding=dilation, | |
| groups=channels, | |
| dilation=dilation, | |
| bias=False) | |
| self.bn = build_norm_layer(norm_cfg, 2 * channels)[1] | |
| self.activate = nn.PReLU(2 * channels) | |
| if downsample: | |
| self.bottleneck = build_conv_layer( | |
| conv_cfg, | |
| 2 * channels, | |
| out_channels, | |
| kernel_size=1, | |
| bias=False) | |
| self.skip_connect = skip_connect and not downsample | |
| self.f_glo = GlobalContextExtractor(out_channels, reduction, with_cp) | |
| def forward(self, x): | |
| def _inner_forward(x): | |
| out = self.conv1x1(x) | |
| loc = self.f_loc(out) | |
| sur = self.f_sur(out) | |
| joi_feat = torch.cat([loc, sur], 1) # the joint feature | |
| joi_feat = self.bn(joi_feat) | |
| joi_feat = self.activate(joi_feat) | |
| if self.downsample: | |
| joi_feat = self.bottleneck(joi_feat) # channel = out_channels | |
| # f_glo is employed to refine the joint feature | |
| out = self.f_glo(joi_feat) | |
| if self.skip_connect: | |
| return x + out | |
| else: | |
| return out | |
| if self.with_cp and x.requires_grad: | |
| out = cp.checkpoint(_inner_forward, x) | |
| else: | |
| out = _inner_forward(x) | |
| return out | |
| class InputInjection(nn.Module): | |
| """Downsampling module for CGNet.""" | |
| def __init__(self, num_downsampling): | |
| super(InputInjection, self).__init__() | |
| self.pool = nn.ModuleList() | |
| for i in range(num_downsampling): | |
| self.pool.append(nn.AvgPool2d(3, stride=2, padding=1)) | |
| def forward(self, x): | |
| for pool in self.pool: | |
| x = pool(x) | |
| return x | |
| class CGNet(nn.Module): | |
| """CGNet backbone. | |
| A Light-weight Context Guided Network for Semantic Segmentation | |
| arXiv: https://arxiv.org/abs/1811.08201 | |
| Args: | |
| in_channels (int): Number of input image channels. Normally 3. | |
| num_channels (tuple[int]): Numbers of feature channels at each stages. | |
| Default: (32, 64, 128). | |
| num_blocks (tuple[int]): Numbers of CG blocks at stage 1 and stage 2. | |
| Default: (3, 21). | |
| dilations (tuple[int]): Dilation rate for surrounding context | |
| extractors at stage 1 and stage 2. Default: (2, 4). | |
| reductions (tuple[int]): Reductions for global context extractors at | |
| stage 1 and stage 2. Default: (8, 16). | |
| conv_cfg (dict): Config dict for convolution layer. | |
| Default: None, which means using conv2d. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='BN', requires_grad=True). | |
| act_cfg (dict): Config dict for activation layer. | |
| Default: dict(type='PReLU'). | |
| norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
| freeze running stats (mean and var). Note: Effect on Batch Norm | |
| and its variants only. Default: False. | |
| with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
| memory while slowing down the training speed. Default: False. | |
| """ | |
| def __init__(self, | |
| in_channels=3, | |
| num_channels=(32, 64, 128), | |
| num_blocks=(3, 21), | |
| dilations=(2, 4), | |
| reductions=(8, 16), | |
| conv_cfg=None, | |
| norm_cfg=dict(type='BN', requires_grad=True), | |
| act_cfg=dict(type='PReLU'), | |
| norm_eval=False, | |
| with_cp=False): | |
| super(CGNet, self).__init__() | |
| self.in_channels = in_channels | |
| self.num_channels = num_channels | |
| assert isinstance(self.num_channels, tuple) and len( | |
| self.num_channels) == 3 | |
| self.num_blocks = num_blocks | |
| assert isinstance(self.num_blocks, tuple) and len(self.num_blocks) == 2 | |
| self.dilations = dilations | |
| assert isinstance(self.dilations, tuple) and len(self.dilations) == 2 | |
| self.reductions = reductions | |
| assert isinstance(self.reductions, tuple) and len(self.reductions) == 2 | |
| self.conv_cfg = conv_cfg | |
| self.norm_cfg = norm_cfg | |
| self.act_cfg = act_cfg | |
| if 'type' in self.act_cfg and self.act_cfg['type'] == 'PReLU': | |
| self.act_cfg['num_parameters'] = num_channels[0] | |
| self.norm_eval = norm_eval | |
| self.with_cp = with_cp | |
| cur_channels = in_channels | |
| self.stem = nn.ModuleList() | |
| for i in range(3): | |
| self.stem.append( | |
| ConvModule( | |
| cur_channels, | |
| num_channels[0], | |
| 3, | |
| 2 if i == 0 else 1, | |
| padding=1, | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg)) | |
| cur_channels = num_channels[0] | |
| self.inject_2x = InputInjection(1) # down-sample for Input, factor=2 | |
| self.inject_4x = InputInjection(2) # down-sample for Input, factor=4 | |
| cur_channels += in_channels | |
| self.norm_prelu_0 = nn.Sequential( | |
| build_norm_layer(norm_cfg, cur_channels)[1], | |
| nn.PReLU(cur_channels)) | |
| # stage 1 | |
| self.level1 = nn.ModuleList() | |
| for i in range(num_blocks[0]): | |
| self.level1.append( | |
| ContextGuidedBlock( | |
| cur_channels if i == 0 else num_channels[1], | |
| num_channels[1], | |
| dilations[0], | |
| reductions[0], | |
| downsample=(i == 0), | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| with_cp=with_cp)) # CG block | |
| cur_channels = 2 * num_channels[1] + in_channels | |
| self.norm_prelu_1 = nn.Sequential( | |
| build_norm_layer(norm_cfg, cur_channels)[1], | |
| nn.PReLU(cur_channels)) | |
| # stage 2 | |
| self.level2 = nn.ModuleList() | |
| for i in range(num_blocks[1]): | |
| self.level2.append( | |
| ContextGuidedBlock( | |
| cur_channels if i == 0 else num_channels[2], | |
| num_channels[2], | |
| dilations[1], | |
| reductions[1], | |
| downsample=(i == 0), | |
| conv_cfg=conv_cfg, | |
| norm_cfg=norm_cfg, | |
| act_cfg=act_cfg, | |
| with_cp=with_cp)) # CG block | |
| cur_channels = 2 * num_channels[2] | |
| self.norm_prelu_2 = nn.Sequential( | |
| build_norm_layer(norm_cfg, cur_channels)[1], | |
| nn.PReLU(cur_channels)) | |
| def forward(self, x): | |
| output = [] | |
| # stage 0 | |
| inp_2x = self.inject_2x(x) | |
| inp_4x = self.inject_4x(x) | |
| for layer in self.stem: | |
| x = layer(x) | |
| x = self.norm_prelu_0(torch.cat([x, inp_2x], 1)) | |
| output.append(x) | |
| # stage 1 | |
| for i, layer in enumerate(self.level1): | |
| x = layer(x) | |
| if i == 0: | |
| down1 = x | |
| x = self.norm_prelu_1(torch.cat([x, down1, inp_4x], 1)) | |
| output.append(x) | |
| # stage 2 | |
| for i, layer in enumerate(self.level2): | |
| x = layer(x) | |
| if i == 0: | |
| down2 = x | |
| x = self.norm_prelu_2(torch.cat([down2, x], 1)) | |
| output.append(x) | |
| return output | |
| def init_weights(self, pretrained=None): | |
| """Initialize the weights in backbone. | |
| Args: | |
| pretrained (str, optional): Path to pre-trained weights. | |
| Defaults to None. | |
| """ | |
| if isinstance(pretrained, str): | |
| logger = get_root_logger() | |
| load_checkpoint(self, pretrained, strict=False, logger=logger) | |
| elif pretrained is None: | |
| for m in self.modules(): | |
| if isinstance(m, (nn.Conv2d, nn.Linear)): | |
| kaiming_init(m) | |
| elif isinstance(m, (_BatchNorm, nn.GroupNorm)): | |
| constant_init(m, 1) | |
| elif isinstance(m, nn.PReLU): | |
| constant_init(m, 0) | |
| else: | |
| raise TypeError('pretrained must be a str or None') | |
| def train(self, mode=True): | |
| """Convert the model into training mode will keeping the normalization | |
| layer freezed.""" | |
| super(CGNet, self).train(mode) | |
| if mode and self.norm_eval: | |
| for m in self.modules(): | |
| # trick: eval have effect on BatchNorm only | |
| if isinstance(m, _BatchNorm): | |
| m.eval() | |