Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import copy | |
| import warnings | |
| import torch | |
| import torch.nn as nn | |
| from annotator.uniformer.mmcv import ConfigDict, deprecated_api_warning | |
| from annotator.uniformer.mmcv.cnn import Linear, build_activation_layer, build_norm_layer | |
| from annotator.uniformer.mmcv.runner.base_module import BaseModule, ModuleList, Sequential | |
| from annotator.uniformer.mmcv.utils import build_from_cfg | |
| from .drop import build_dropout | |
| from .registry import (ATTENTION, FEEDFORWARD_NETWORK, POSITIONAL_ENCODING, | |
| TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE) | |
| # Avoid BC-breaking of importing MultiScaleDeformableAttention from this file | |
| try: | |
| from annotator.uniformer.mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention # noqa F401 | |
| warnings.warn( | |
| ImportWarning( | |
| '``MultiScaleDeformableAttention`` has been moved to ' | |
| '``mmcv.ops.multi_scale_deform_attn``, please change original path ' # noqa E501 | |
| '``from annotator.uniformer.mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention`` ' # noqa E501 | |
| 'to ``from annotator.uniformer.mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention`` ' # noqa E501 | |
| )) | |
| except ImportError: | |
| warnings.warn('Fail to import ``MultiScaleDeformableAttention`` from ' | |
| '``mmcv.ops.multi_scale_deform_attn``, ' | |
| 'You should install ``mmcv-full`` if you need this module. ') | |
| def build_positional_encoding(cfg, default_args=None): | |
| """Builder for Position Encoding.""" | |
| return build_from_cfg(cfg, POSITIONAL_ENCODING, default_args) | |
| def build_attention(cfg, default_args=None): | |
| """Builder for attention.""" | |
| return build_from_cfg(cfg, ATTENTION, default_args) | |
| def build_feedforward_network(cfg, default_args=None): | |
| """Builder for feed-forward network (FFN).""" | |
| return build_from_cfg(cfg, FEEDFORWARD_NETWORK, default_args) | |
| def build_transformer_layer(cfg, default_args=None): | |
| """Builder for transformer layer.""" | |
| return build_from_cfg(cfg, TRANSFORMER_LAYER, default_args) | |
| def build_transformer_layer_sequence(cfg, default_args=None): | |
| """Builder for transformer encoder and transformer decoder.""" | |
| return build_from_cfg(cfg, TRANSFORMER_LAYER_SEQUENCE, default_args) | |
| class MultiheadAttention(BaseModule): | |
| """A wrapper for ``torch.nn.MultiheadAttention``. | |
| This module implements MultiheadAttention with identity connection, | |
| and positional encoding is also passed as input. | |
| Args: | |
| embed_dims (int): The embedding dimension. | |
| num_heads (int): Parallel attention heads. | |
| attn_drop (float): A Dropout layer on attn_output_weights. | |
| Default: 0.0. | |
| proj_drop (float): A Dropout layer after `nn.MultiheadAttention`. | |
| Default: 0.0. | |
| dropout_layer (obj:`ConfigDict`): The dropout_layer used | |
| when adding the shortcut. | |
| init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
| Default: None. | |
| batch_first (bool): When it is True, Key, Query and Value are shape of | |
| (batch, n, embed_dim), otherwise (n, batch, embed_dim). | |
| Default to False. | |
| """ | |
| def __init__(self, | |
| embed_dims, | |
| num_heads, | |
| attn_drop=0., | |
| proj_drop=0., | |
| dropout_layer=dict(type='Dropout', drop_prob=0.), | |
| init_cfg=None, | |
| batch_first=False, | |
| **kwargs): | |
| super(MultiheadAttention, self).__init__(init_cfg) | |
| if 'dropout' in kwargs: | |
| warnings.warn('The arguments `dropout` in MultiheadAttention ' | |
| 'has been deprecated, now you can separately ' | |
| 'set `attn_drop`(float), proj_drop(float), ' | |
| 'and `dropout_layer`(dict) ') | |
| attn_drop = kwargs['dropout'] | |
| dropout_layer['drop_prob'] = kwargs.pop('dropout') | |
| self.embed_dims = embed_dims | |
| self.num_heads = num_heads | |
| self.batch_first = batch_first | |
| self.attn = nn.MultiheadAttention(embed_dims, num_heads, attn_drop, | |
| **kwargs) | |
| self.proj_drop = nn.Dropout(proj_drop) | |
| self.dropout_layer = build_dropout( | |
| dropout_layer) if dropout_layer else nn.Identity() | |
| def forward(self, | |
| query, | |
| key=None, | |
| value=None, | |
| identity=None, | |
| query_pos=None, | |
| key_pos=None, | |
| attn_mask=None, | |
| key_padding_mask=None, | |
| **kwargs): | |
| """Forward function for `MultiheadAttention`. | |
| **kwargs allow passing a more general data flow when combining | |
| with other operations in `transformerlayer`. | |
| Args: | |
| query (Tensor): The input query with shape [num_queries, bs, | |
| embed_dims] if self.batch_first is False, else | |
| [bs, num_queries embed_dims]. | |
| key (Tensor): The key tensor with shape [num_keys, bs, | |
| embed_dims] if self.batch_first is False, else | |
| [bs, num_keys, embed_dims] . | |
| If None, the ``query`` will be used. Defaults to None. | |
| value (Tensor): The value tensor with same shape as `key`. | |
| Same in `nn.MultiheadAttention.forward`. Defaults to None. | |
| If None, the `key` will be used. | |
| identity (Tensor): This tensor, with the same shape as x, | |
| will be used for the identity link. | |
| If None, `x` will be used. Defaults to None. | |
| query_pos (Tensor): The positional encoding for query, with | |
| the same shape as `x`. If not None, it will | |
| be added to `x` before forward function. Defaults to None. | |
| key_pos (Tensor): The positional encoding for `key`, with the | |
| same shape as `key`. Defaults to None. If not None, it will | |
| be added to `key` before forward function. If None, and | |
| `query_pos` has the same shape as `key`, then `query_pos` | |
| will be used for `key_pos`. Defaults to None. | |
| attn_mask (Tensor): ByteTensor mask with shape [num_queries, | |
| num_keys]. Same in `nn.MultiheadAttention.forward`. | |
| Defaults to None. | |
| key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. | |
| Defaults to None. | |
| Returns: | |
| Tensor: forwarded results with shape | |
| [num_queries, bs, embed_dims] | |
| if self.batch_first is False, else | |
| [bs, num_queries embed_dims]. | |
| """ | |
| if key is None: | |
| key = query | |
| if value is None: | |
| value = key | |
| if identity is None: | |
| identity = query | |
| if key_pos is None: | |
| if query_pos is not None: | |
| # use query_pos if key_pos is not available | |
| if query_pos.shape == key.shape: | |
| key_pos = query_pos | |
| else: | |
| warnings.warn(f'position encoding of key is' | |
| f'missing in {self.__class__.__name__}.') | |
| if query_pos is not None: | |
| query = query + query_pos | |
| if key_pos is not None: | |
| key = key + key_pos | |
| # Because the dataflow('key', 'query', 'value') of | |
| # ``torch.nn.MultiheadAttention`` is (num_query, batch, | |
| # embed_dims), We should adjust the shape of dataflow from | |
| # batch_first (batch, num_query, embed_dims) to num_query_first | |
| # (num_query ,batch, embed_dims), and recover ``attn_output`` | |
| # from num_query_first to batch_first. | |
| if self.batch_first: | |
| query = query.transpose(0, 1) | |
| key = key.transpose(0, 1) | |
| value = value.transpose(0, 1) | |
| out = self.attn( | |
| query=query, | |
| key=key, | |
| value=value, | |
| attn_mask=attn_mask, | |
| key_padding_mask=key_padding_mask)[0] | |
| if self.batch_first: | |
| out = out.transpose(0, 1) | |
| return identity + self.dropout_layer(self.proj_drop(out)) | |
| class FFN(BaseModule): | |
| """Implements feed-forward networks (FFNs) with identity connection. | |
| Args: | |
| embed_dims (int): The feature dimension. Same as | |
| `MultiheadAttention`. Defaults: 256. | |
| feedforward_channels (int): The hidden dimension of FFNs. | |
| Defaults: 1024. | |
| num_fcs (int, optional): The number of fully-connected layers in | |
| FFNs. Default: 2. | |
| act_cfg (dict, optional): The activation config for FFNs. | |
| Default: dict(type='ReLU') | |
| ffn_drop (float, optional): Probability of an element to be | |
| zeroed in FFN. Default 0.0. | |
| add_identity (bool, optional): Whether to add the | |
| identity connection. Default: `True`. | |
| dropout_layer (obj:`ConfigDict`): The dropout_layer used | |
| when adding the shortcut. | |
| init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
| Default: None. | |
| """ | |
| def __init__(self, | |
| embed_dims=256, | |
| feedforward_channels=1024, | |
| num_fcs=2, | |
| act_cfg=dict(type='ReLU', inplace=True), | |
| ffn_drop=0., | |
| dropout_layer=None, | |
| add_identity=True, | |
| init_cfg=None, | |
| **kwargs): | |
| super(FFN, self).__init__(init_cfg) | |
| assert num_fcs >= 2, 'num_fcs should be no less ' \ | |
| f'than 2. got {num_fcs}.' | |
| self.embed_dims = embed_dims | |
| self.feedforward_channels = feedforward_channels | |
| self.num_fcs = num_fcs | |
| self.act_cfg = act_cfg | |
| self.activate = build_activation_layer(act_cfg) | |
| layers = [] | |
| in_channels = embed_dims | |
| for _ in range(num_fcs - 1): | |
| layers.append( | |
| Sequential( | |
| Linear(in_channels, feedforward_channels), self.activate, | |
| nn.Dropout(ffn_drop))) | |
| in_channels = feedforward_channels | |
| layers.append(Linear(feedforward_channels, embed_dims)) | |
| layers.append(nn.Dropout(ffn_drop)) | |
| self.layers = Sequential(*layers) | |
| self.dropout_layer = build_dropout( | |
| dropout_layer) if dropout_layer else torch.nn.Identity() | |
| self.add_identity = add_identity | |
| def forward(self, x, identity=None): | |
| """Forward function for `FFN`. | |
| The function would add x to the output tensor if residue is None. | |
| """ | |
| out = self.layers(x) | |
| if not self.add_identity: | |
| return self.dropout_layer(out) | |
| if identity is None: | |
| identity = x | |
| return identity + self.dropout_layer(out) | |
| class BaseTransformerLayer(BaseModule): | |
| """Base `TransformerLayer` for vision transformer. | |
| It can be built from `mmcv.ConfigDict` and support more flexible | |
| customization, for example, using any number of `FFN or LN ` and | |
| use different kinds of `attention` by specifying a list of `ConfigDict` | |
| named `attn_cfgs`. It is worth mentioning that it supports `prenorm` | |
| when you specifying `norm` as the first element of `operation_order`. | |
| More details about the `prenorm`: `On Layer Normalization in the | |
| Transformer Architecture <https://arxiv.org/abs/2002.04745>`_ . | |
| Args: | |
| attn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )): | |
| Configs for `self_attention` or `cross_attention` modules, | |
| The order of the configs in the list should be consistent with | |
| corresponding attentions in operation_order. | |
| If it is a dict, all of the attention modules in operation_order | |
| will be built with this config. Default: None. | |
| ffn_cfgs (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict` | None )): | |
| Configs for FFN, The order of the configs in the list should be | |
| consistent with corresponding ffn in operation_order. | |
| If it is a dict, all of the attention modules in operation_order | |
| will be built with this config. | |
| operation_order (tuple[str]): The execution order of operation | |
| in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). | |
| Support `prenorm` when you specifying first element as `norm`. | |
| DefaultοΌNone. | |
| norm_cfg (dict): Config dict for normalization layer. | |
| Default: dict(type='LN'). | |
| init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
| Default: None. | |
| batch_first (bool): Key, Query and Value are shape | |
| of (batch, n, embed_dim) | |
| or (n, batch, embed_dim). Default to False. | |
| """ | |
| def __init__(self, | |
| attn_cfgs=None, | |
| ffn_cfgs=dict( | |
| type='FFN', | |
| embed_dims=256, | |
| feedforward_channels=1024, | |
| num_fcs=2, | |
| ffn_drop=0., | |
| act_cfg=dict(type='ReLU', inplace=True), | |
| ), | |
| operation_order=None, | |
| norm_cfg=dict(type='LN'), | |
| init_cfg=None, | |
| batch_first=False, | |
| **kwargs): | |
| deprecated_args = dict( | |
| feedforward_channels='feedforward_channels', | |
| ffn_dropout='ffn_drop', | |
| ffn_num_fcs='num_fcs') | |
| for ori_name, new_name in deprecated_args.items(): | |
| if ori_name in kwargs: | |
| warnings.warn( | |
| f'The arguments `{ori_name}` in BaseTransformerLayer ' | |
| f'has been deprecated, now you should set `{new_name}` ' | |
| f'and other FFN related arguments ' | |
| f'to a dict named `ffn_cfgs`. ') | |
| ffn_cfgs[new_name] = kwargs[ori_name] | |
| super(BaseTransformerLayer, self).__init__(init_cfg) | |
| self.batch_first = batch_first | |
| assert set(operation_order) & set( | |
| ['self_attn', 'norm', 'ffn', 'cross_attn']) == \ | |
| set(operation_order), f'The operation_order of' \ | |
| f' {self.__class__.__name__} should ' \ | |
| f'contains all four operation type ' \ | |
| f"{['self_attn', 'norm', 'ffn', 'cross_attn']}" | |
| num_attn = operation_order.count('self_attn') + operation_order.count( | |
| 'cross_attn') | |
| if isinstance(attn_cfgs, dict): | |
| attn_cfgs = [copy.deepcopy(attn_cfgs) for _ in range(num_attn)] | |
| else: | |
| assert num_attn == len(attn_cfgs), f'The length ' \ | |
| f'of attn_cfg {num_attn} is ' \ | |
| f'not consistent with the number of attention' \ | |
| f'in operation_order {operation_order}.' | |
| self.num_attn = num_attn | |
| self.operation_order = operation_order | |
| self.norm_cfg = norm_cfg | |
| self.pre_norm = operation_order[0] == 'norm' | |
| self.attentions = ModuleList() | |
| index = 0 | |
| for operation_name in operation_order: | |
| if operation_name in ['self_attn', 'cross_attn']: | |
| if 'batch_first' in attn_cfgs[index]: | |
| assert self.batch_first == attn_cfgs[index]['batch_first'] | |
| else: | |
| attn_cfgs[index]['batch_first'] = self.batch_first | |
| attention = build_attention(attn_cfgs[index]) | |
| # Some custom attentions used as `self_attn` | |
| # or `cross_attn` can have different behavior. | |
| attention.operation_name = operation_name | |
| self.attentions.append(attention) | |
| index += 1 | |
| self.embed_dims = self.attentions[0].embed_dims | |
| self.ffns = ModuleList() | |
| num_ffns = operation_order.count('ffn') | |
| if isinstance(ffn_cfgs, dict): | |
| ffn_cfgs = ConfigDict(ffn_cfgs) | |
| if isinstance(ffn_cfgs, dict): | |
| ffn_cfgs = [copy.deepcopy(ffn_cfgs) for _ in range(num_ffns)] | |
| assert len(ffn_cfgs) == num_ffns | |
| for ffn_index in range(num_ffns): | |
| if 'embed_dims' not in ffn_cfgs[ffn_index]: | |
| ffn_cfgs['embed_dims'] = self.embed_dims | |
| else: | |
| assert ffn_cfgs[ffn_index]['embed_dims'] == self.embed_dims | |
| self.ffns.append( | |
| build_feedforward_network(ffn_cfgs[ffn_index], | |
| dict(type='FFN'))) | |
| self.norms = ModuleList() | |
| num_norms = operation_order.count('norm') | |
| for _ in range(num_norms): | |
| self.norms.append(build_norm_layer(norm_cfg, self.embed_dims)[1]) | |
| def forward(self, | |
| query, | |
| key=None, | |
| value=None, | |
| query_pos=None, | |
| key_pos=None, | |
| attn_masks=None, | |
| query_key_padding_mask=None, | |
| key_padding_mask=None, | |
| **kwargs): | |
| """Forward function for `TransformerDecoderLayer`. | |
| **kwargs contains some specific arguments of attentions. | |
| Args: | |
| query (Tensor): The input query with shape | |
| [num_queries, bs, embed_dims] if | |
| self.batch_first is False, else | |
| [bs, num_queries embed_dims]. | |
| key (Tensor): The key tensor with shape [num_keys, bs, | |
| embed_dims] if self.batch_first is False, else | |
| [bs, num_keys, embed_dims] . | |
| value (Tensor): The value tensor with same shape as `key`. | |
| query_pos (Tensor): The positional encoding for `query`. | |
| Default: None. | |
| key_pos (Tensor): The positional encoding for `key`. | |
| Default: None. | |
| attn_masks (List[Tensor] | None): 2D Tensor used in | |
| calculation of corresponding attention. The length of | |
| it should equal to the number of `attention` in | |
| `operation_order`. Default: None. | |
| query_key_padding_mask (Tensor): ByteTensor for `query`, with | |
| shape [bs, num_queries]. Only used in `self_attn` layer. | |
| Defaults to None. | |
| key_padding_mask (Tensor): ByteTensor for `query`, with | |
| shape [bs, num_keys]. Default: None. | |
| Returns: | |
| Tensor: forwarded results with shape [num_queries, bs, embed_dims]. | |
| """ | |
| norm_index = 0 | |
| attn_index = 0 | |
| ffn_index = 0 | |
| identity = query | |
| if attn_masks is None: | |
| attn_masks = [None for _ in range(self.num_attn)] | |
| elif isinstance(attn_masks, torch.Tensor): | |
| attn_masks = [ | |
| copy.deepcopy(attn_masks) for _ in range(self.num_attn) | |
| ] | |
| warnings.warn(f'Use same attn_mask in all attentions in ' | |
| f'{self.__class__.__name__} ') | |
| else: | |
| assert len(attn_masks) == self.num_attn, f'The length of ' \ | |
| f'attn_masks {len(attn_masks)} must be equal ' \ | |
| f'to the number of attention in ' \ | |
| f'operation_order {self.num_attn}' | |
| for layer in self.operation_order: | |
| if layer == 'self_attn': | |
| temp_key = temp_value = query | |
| query = self.attentions[attn_index]( | |
| query, | |
| temp_key, | |
| temp_value, | |
| identity if self.pre_norm else None, | |
| query_pos=query_pos, | |
| key_pos=query_pos, | |
| attn_mask=attn_masks[attn_index], | |
| key_padding_mask=query_key_padding_mask, | |
| **kwargs) | |
| attn_index += 1 | |
| identity = query | |
| elif layer == 'norm': | |
| query = self.norms[norm_index](query) | |
| norm_index += 1 | |
| elif layer == 'cross_attn': | |
| query = self.attentions[attn_index]( | |
| query, | |
| key, | |
| value, | |
| identity if self.pre_norm else None, | |
| query_pos=query_pos, | |
| key_pos=key_pos, | |
| attn_mask=attn_masks[attn_index], | |
| key_padding_mask=key_padding_mask, | |
| **kwargs) | |
| attn_index += 1 | |
| identity = query | |
| elif layer == 'ffn': | |
| query = self.ffns[ffn_index]( | |
| query, identity if self.pre_norm else None) | |
| ffn_index += 1 | |
| return query | |
| class TransformerLayerSequence(BaseModule): | |
| """Base class for TransformerEncoder and TransformerDecoder in vision | |
| transformer. | |
| As base-class of Encoder and Decoder in vision transformer. | |
| Support customization such as specifying different kind | |
| of `transformer_layer` in `transformer_coder`. | |
| Args: | |
| transformerlayer (list[obj:`mmcv.ConfigDict`] | | |
| obj:`mmcv.ConfigDict`): Config of transformerlayer | |
| in TransformerCoder. If it is obj:`mmcv.ConfigDict`, | |
| it would be repeated `num_layer` times to a | |
| list[`mmcv.ConfigDict`]. Default: None. | |
| num_layers (int): The number of `TransformerLayer`. Default: None. | |
| init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
| Default: None. | |
| """ | |
| def __init__(self, transformerlayers=None, num_layers=None, init_cfg=None): | |
| super(TransformerLayerSequence, self).__init__(init_cfg) | |
| if isinstance(transformerlayers, dict): | |
| transformerlayers = [ | |
| copy.deepcopy(transformerlayers) for _ in range(num_layers) | |
| ] | |
| else: | |
| assert isinstance(transformerlayers, list) and \ | |
| len(transformerlayers) == num_layers | |
| self.num_layers = num_layers | |
| self.layers = ModuleList() | |
| for i in range(num_layers): | |
| self.layers.append(build_transformer_layer(transformerlayers[i])) | |
| self.embed_dims = self.layers[0].embed_dims | |
| self.pre_norm = self.layers[0].pre_norm | |
| def forward(self, | |
| query, | |
| key, | |
| value, | |
| query_pos=None, | |
| key_pos=None, | |
| attn_masks=None, | |
| query_key_padding_mask=None, | |
| key_padding_mask=None, | |
| **kwargs): | |
| """Forward function for `TransformerCoder`. | |
| Args: | |
| query (Tensor): Input query with shape | |
| `(num_queries, bs, embed_dims)`. | |
| key (Tensor): The key tensor with shape | |
| `(num_keys, bs, embed_dims)`. | |
| value (Tensor): The value tensor with shape | |
| `(num_keys, bs, embed_dims)`. | |
| query_pos (Tensor): The positional encoding for `query`. | |
| Default: None. | |
| key_pos (Tensor): The positional encoding for `key`. | |
| Default: None. | |
| attn_masks (List[Tensor], optional): Each element is 2D Tensor | |
| which is used in calculation of corresponding attention in | |
| operation_order. Default: None. | |
| query_key_padding_mask (Tensor): ByteTensor for `query`, with | |
| shape [bs, num_queries]. Only used in self-attention | |
| Default: None. | |
| key_padding_mask (Tensor): ByteTensor for `query`, with | |
| shape [bs, num_keys]. Default: None. | |
| Returns: | |
| Tensor: results with shape [num_queries, bs, embed_dims]. | |
| """ | |
| for layer in self.layers: | |
| query = layer( | |
| query, | |
| key, | |
| value, | |
| query_pos=query_pos, | |
| key_pos=key_pos, | |
| attn_masks=attn_masks, | |
| query_key_padding_mask=query_key_padding_mask, | |
| key_padding_mask=key_padding_mask, | |
| **kwargs) | |
| return query | |