File size: 16,944 Bytes
d2fc863
5c27299
 
 
 
 
 
 
d2fc863
5c27299
bac43dd
 
 
 
 
 
 
 
 
 
 
 
cfb3a9b
bac43dd
 
 
 
 
5c27299
 
d2fc863
bac43dd
5c27299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac43dd
 
5c27299
 
 
 
 
 
bac43dd
5c27299
 
bac43dd
5c27299
 
bac43dd
 
5c27299
 
 
 
 
bac43dd
5c27299
 
bac43dd
5c27299
 
bac43dd
 
5c27299
 
 
bac43dd
5c27299
 
bac43dd
5c27299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac43dd
 
 
cfb3a9b
5c27299
 
bac43dd
5c27299
 
bac43dd
5c27299
 
bac43dd
 
5c27299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac43dd
5c27299
 
d2fc863
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
from cv_functions.functions import (
    image_video_io, color_space_conversion, resize_crop, geometric_transform,
    thresholding, edge_detection, image_filtering, contour_detection,
    feature_detection, object_detection, face_detection, image_segmentation,
    optical_flow, camera_calibration, stereo_vision, background_subtraction,
    image_stitching, kmeans_clustering, deep_learning, drawing_text
)

# Custom CSS with Tailwind
custom_css = """
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/tailwind.min.css" rel="stylesheet">
<style>
    body { @apply bg-gray-100 font-sans; }
    .gradio-container { @apply max-w-7xl mx-auto p-4; }
    .tab-button { @apply px-4 py-2 text-sm font-medium text-gray-700 bg-white rounded-t-lg border-b-2 border-transparent hover:border-blue-500 focus:outline-none focus:border-blue-500; }
    .tab-button-active { @apply border-blue-500 text-blue-600; }
    .tab-content { @apply bg-white p-6 rounded-b-lg shadow-lg; }
    .gallery img { @apply rounded-lg shadow-md; }
    .btn-primary { @apply bg-blue-500 text-white px-4 py-2 rounded-lg hover:bg-blue-600 transition; }
    h1 { @apply text-3xl font-bold text-gray-800 mb-4; }
    .input-label { @apply text-sm font-medium text-gray-600 mb-2; }
    .markdown-style { @apply text-center text-gray-600 mb-4; }
</style>
"""

# Gradio interface
with gr.Blocks(css=custom_css) as demo:
    gr.HTML("<h1 class='text-center'>OpenCV Comprehensive Demo</h1>")
    gr.Markdown("Explore all OpenCV features by uploading images or videos and selecting a tab below.", elem_classes=["markdown-style"])
    
    with gr.Tabs():
        # 1. Image and Video I/O
        with gr.TabItem("Image/Video I/O", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Upload an image or video to display.", elem_classes=["input-label"])
                    io_image = gr.Image(label="Upload Image", type="pil")
                    io_video = gr.Video(label="Upload Video")
                    io_button = gr.Button("Display", elem_classes="btn-primary")
                with gr.Column():
                    io_output = gr.Gallery(label="Output")
            io_button.click(fn=image_video_io, inputs=[io_image, io_video], outputs=io_output)
        
        # 2. Color Space Conversion
        with gr.TabItem("Color Space Conversion", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Convert between RGB, HSV, and LAB color spaces.", elem_classes=["input-label"])
                    cs_image = gr.Image(label="Upload Image", type="pil")
                    cs_space = gr.Dropdown(choices=["RGB", "HSV", "LAB"], label="Color Space", value="RGB")
                    cs_button = gr.Button("Apply Conversion", elem_classes="btn-primary")
                with gr.Column():
                    cs_output = gr.Image(label="Converted Image")
            cs_button.click(fn=color_space_conversion, inputs=[cs_image, cs_space], outputs=cs_output)
        
        # 3. Image Resizing and Cropping
        with gr.TabItem("Resizing and Cropping", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Resize or crop the image.", elem_classes=["input-label"])
                    rc_image = gr.Image(label="Upload Image", type="pil")
                    rc_scale = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Scale Factor")
                    rc_crop_x = gr.Slider(0, 1, value=0, step=0.1, label="Crop X (relative)")
                    rc_crop_y = gr.Slider(0, 1, value=0, step=0.1, label="Crop Y (relative)")
                    rc_crop_w = gr.Slider(0, 1, value=0.5, step=0.1, label="Crop Width (relative)")
                    rc_crop_h = gr.Slider(0, 1, value=0.5, step=0.1, label="Crop Height (relative)")
                    rc_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    rc_output = gr.Gallery(label="Resized and Cropped Images")
            rc_button.click(fn=resize_crop, inputs=[rc_image, rc_scale, rc_crop_x, rc_crop_y, rc_crop_w, rc_crop_h], outputs=rc_output)
        
        # 4. Geometric Transformations
        with gr.TabItem("Geometric Transformations", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Apply rotation and translation.", elem_classes=["input-label"])
                    gt_image = gr.Image(label="Upload Image", type="pil")
                    gt_angle = gr.Slider(-180, 180, value=0, step=1, label="Rotation Angle (degrees)")
                    gt_tx = gr.Slider(-100, 100, value=0, step=1, label="Translation X (pixels)")
                    gt_ty = gr.Slider(-100, 100, value=0, step=1, label="Translation Y (pixels)")
                    gt_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    gt_output = gr.Image(label="Transformed Image")
            gt_button.click(fn=geometric_transform, inputs=[gt_image, gt_angle, gt_tx, gt_ty], outputs=gt_output)
        
        # 5. Image Thresholding
        with gr.TabItem("Thresholding", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Apply global or adaptive thresholding.", elem_classes=["input-label"])
                    thresh_image = gr.Image(label="Upload Image", type="pil")
                    thresh_type = gr.Dropdown(choices=["Global", "Adaptive"], label="Threshold Type", value="Global")
                    thresh_value = gr.Slider(0, 255, value=127, step=1, label="Threshold Value")
                    thresh_block = gr.Slider(3, 21, value=11, step=2, label="Block Size (Adaptive)")
                    thresh_C = gr.Slider(-10, 10, value=2, step=1, label="Constant (Adaptive)")
                    thresh_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    thresh_output = gr.Image(label="Thresholded Image")
            thresh_button.click(fn=thresholding, inputs=[thresh_image, thresh_type, thresh_value, thresh_block, thresh_C], outputs=thresh_output)
        
        # 6. Edge Detection
        with gr.TabItem("Edge Detection", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect edges using Canny, Sobel, or Laplacian.", elem_classes=["input-label"])
                    edge_image = gr.Image(label="Upload Image", type="pil")
                    edge_type = gr.Dropdown(choices=["Canny", "Sobel", "Laplacian"], label="Edge Type", value="Canny")
                    edge_t1 = gr.Slider(0, 500, value=100, step=10, label="Canny Threshold 1")
                    edge_t2 = gr.Slider(0, 500, value=200, step=10, label="Canny Threshold 2")
                    edge_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    edge_output = gr.Image(label="Edges")
            edge_button.click(fn=edge_detection, inputs=[edge_image, edge_type, edge_t1, edge_t2], outputs=edge_output)
        
        # 7. Image Filtering
        with gr.TabItem("Image Filtering", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Apply Gaussian or median blur.", elem_classes=["input-label"])
                    filter_image = gr.Image(label="Upload Image", type="pil")
                    filter_type = gr.Dropdown(choices=["Gaussian", "Median"], label="Filter Type", value="Gaussian")
                    filter_kernel = gr.Slider(3, 21, value=5, step=2, label="Kernel Size")
                    filter_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    filter_output = gr.Image(label="Filtered Image")
            filter_button.click(fn=image_filtering, inputs=[filter_image, filter_type, filter_kernel], outputs=filter_output)
        
        # 8. Contour Detection
        with gr.TabItem("Contour Detection", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect and draw contours.", elem_classes=["input-label"])
                    contour_image = gr.Image(label="Upload Image", type="pil")
                    contour_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    contour_output = gr.Image(label="Contours")
            contour_button.click(fn=contour_detection, inputs=contour_image, outputs=contour_output)
        
        # 9. Feature Detection
        with gr.TabItem("Feature Detection", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect ORB keypoints.", elem_classes=["input-label"])
                    feat_image = gr.Image(label="Upload Image", type="pil")
                    feat_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    feat_output = gr.Image(label="Keypoints")
            feat_button.click(fn=feature_detection, inputs=feat_image, outputs=feat_output)
        
        # 10. Object Detection
        with gr.TabItem("Object Detection", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect cars using Haar Cascade.", elem_classes=["input-label"])
                    obj_image = gr.Image(label="Upload Image", type="pil")
                    obj_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    obj_output = gr.Image(label="Detected Objects")
            obj_button.click(fn=object_detection, inputs=obj_image, outputs=obj_output)
        
        # 11. Face Detection
        with gr.TabItem("Face Detection", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect faces using Haar Cascade.", elem_classes=["input-label"])
                    face_image = gr.Image(label="Upload Image", type="pil")
                    face_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    face_output = gr.Image(label="Detected Faces")
            face_button.click(fn=face_detection, inputs=face_image, outputs=face_output)
        
        # 12. Image Segmentation
        with gr.TabItem("Image Segmentation", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Apply GrabCut segmentation.", elem_classes=["input-label"])
                    seg_image = gr.Image(label="Upload Image", type="pil")
                    seg_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    seg_output = gr.Image(label="Segmented Image")
            seg_button.click(fn=image_segmentation, inputs=seg_image, outputs=seg_output)
        
        # 13. Motion Analysis
        with gr.TabItem("Motion Analysis", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Compute optical flow for video.", elem_classes=["input-label"])
                    motion_video = gr.Video(label="Upload Video")
                    motion_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    motion_output = gr.Image(label="Optical Flow")
            motion_button.click(fn=optical_flow, inputs=motion_video, outputs=motion_output)
        
        # 14. Camera Calibration
        with gr.TabItem("Camera Calibration", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect checkerboard for calibration (upload checkerboard image).", elem_classes=["input-label"])
                    calib_image = gr.Image(label="Upload Image", type="pil")
                    calib_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    calib_output = gr.Image(label="Calibration Result")
            calib_button.click(fn=camera_calibration, inputs=calib_image, outputs=calib_output)
        
        # 15. Stereo Vision
        with gr.TabItem("Stereo Vision", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Compute disparity map (simplified).", elem_classes=["input-label"])
                    stereo_image = gr.Image(label="Upload Image", type="pil")
                    stereo_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    stereo_output = gr.Image(label="Disparity Map")
            stereo_button.click(fn=stereo_vision, inputs=stereo_image, outputs=stereo_output)
        
        # 16. Background Subtraction
        with gr.TabItem("Background Subtraction", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Apply MOG2 for moving object detection.", elem_classes=["input-label"])
                    bg_video = gr.Video(label="Upload Video")
                    bg_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    bg_output = gr.Image(label="Foreground Mask")
            bg_button.click(fn=background_subtraction, inputs=bg_video, outputs=bg_output)
        
        # 17. Image Stitching
        with gr.TabItem("Image Stitching", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Stitch two images using ORB features.", elem_classes=["input-label"])
                    stitch_image1 = gr.Image(label="Upload First Image", type="pil")
                    stitch_image2 = gr.Image(label="Upload Second Image", type="pil")
                    stitch_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    stitch_output = gr.Image(label="Stitched Image")
            stitch_button.click(fn=image_stitching, inputs=[stitch_image1, stitch_image2], outputs=stitch_output)
        
        # 18. Machine Learning (K-Means)
        with gr.TabItem("K-Means Clustering", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Apply k-means clustering for color quantization.", elem_classes=["input-label"])
                    kmeans_image = gr.Image(label="Upload Image", type="pil")
                    kmeans_k = gr.Slider(2, 16, value=8, step=1, label="Number of Clusters (K)")
                    kmeans_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    kmeans_output = gr.Image(label="Clustered Image")
            kmeans_button.click(fn=kmeans_clustering, inputs=[kmeans_image, kmeans_k], outputs=kmeans_output)
        
        # 19. Deep Learning
        with gr.TabItem("Deep Learning", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Detect objects using MobileNet SSD (upload prototxt and caffemodel files).", elem_classes=["input-label"])
                    dl_image = gr.Image(label="Upload Image", type="pil")
                    dl_prototxt = gr.File(label="Upload Prototxt File")
                    dl_model = gr.File(label="Upload Caffemodel File")
                    dl_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    dl_output = gr.Image(label="Detected Objects")
            dl_button.click(fn=deep_learning, inputs=[dl_image, dl_prototxt, dl_model], outputs=dl_output)
        
        # 20. Drawing and Text
        with gr.TabItem("Drawing and Text", elem_classes="tab-button"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("Draw shapes and add text to the image.", elem_classes=["input-label"])
                    draw_image = gr.Image(label="Upload Image", type="pil")
                    draw_shape = gr.Dropdown(choices=["Rectangle", "Circle"], label="Shape", value="Rectangle")
                    draw_text = gr.Textbox(label="Text to Add", value="OpenCV")
                    draw_button = gr.Button("Apply", elem_classes="btn-primary")
                with gr.Column():
                    draw_output = gr.Image(label="Annotated Image")
            draw_button.click(fn=drawing_text, inputs=[draw_image, draw_shape, draw_text], outputs=draw_output)

if __name__ == "__main__":
    demo.launch()