File size: 10,008 Bytes
9f8b414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import cv2
import numpy as np
import os

# Load Haar Cascades for face and object detection
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
car_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_car.xml')

# Helper function to convert PIL to OpenCV
def pil_to_cv2(image):
    return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

# Helper function to convert OpenCV to PIL
def cv2_to_pil(image):
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# 1. Image and Video I/O
def image_video_io(image=None, video=None):
    outputs = []
    if image is not None:
        img = pil_to_cv2(image)
        outputs.append(cv2_to_pil(img))
    if video is not None:
        cap = cv2.VideoCapture(video)
        ret, frame = cap.read()
        if ret:
            outputs.append(cv2_to_pil(frame))
        cap.release()
    return outputs

# 2. Color Space Conversion
def color_space_conversion(image, color_space):
    img = pil_to_cv2(image)
    if color_space == "HSV":
        output = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    elif color_space == "LAB":
        output = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
    else:
        output = img
    return cv2_to_pil(output)

# 3. Image Resizing and Cropping
def resize_crop(image, scale, crop_x, crop_y, crop_w, crop_h):
    img = pil_to_cv2(image)
    h, w = img.shape[:2]
    new_w, new_h = int(w * scale), int(h * scale)
    resized = cv2.resize(img, (new_w, new_h))
    crop_x, crop_y, crop_w, crop_h = int(crop_x * w), int(crop_y * h), int(crop_w * w), int(crop_h * h)
    cropped = img[crop_y:crop_y+crop_h, crop_x:crop_x+crop_w]
    return [cv2_to_pil(resized), cv2_to_pil(cropped)]

# 4. Geometric Transformations
def geometric_transform(image, angle, tx, ty):
    img = pil_to_cv2(image)
    h, w = img.shape[:2]
    center = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    M[:, 2] += [tx, ty]
    transformed = cv2.warpAffine(img, M, (w, h))
    return cv2_to_pil(transformed)

# 5. Image Thresholding
def thresholding(image, thresh_type, thresh_value, block_size, C):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    if thresh_type == "Global":
        _, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
    else:
        thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, block_size, C)
    return cv2_to_pil(thresh)

# 6. Edge Detection
def edge_detection(image, edge_type, canny_t1, canny_t2):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    if edge_type == "Canny":
        edges = cv2.Canny(gray, canny_t1, canny_t2)
    elif edge_type == "Sobel":
        sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=5)
        sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=5)
        edges = cv2.magnitude(sobelx, sobely).astype(np.uint8)
    else:  # Laplacian
        edges = cv2.Laplacian(gray, cv2.CV_64F).astype(np.uint8)
    return cv2_to_pil(edges)

# 7. Image Filtering
def image_filtering(image, filter_type, kernel_size):
    img = pil_to_cv2(image)
    kernel_size = int(kernel_size) | 1
    if filter_type == "Gaussian":
        filtered = cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
    else:  # Median
        filtered = cv2.medianBlur(img, kernel_size)
    return cv2_to_pil(filtered)

# 8. Contour Detection
def contour_detection(image):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    output = img.copy()
    cv2.drawContours(output, contours, -1, (0, 255, 0), 2)
    return cv2_to_pil(output)

# 9. Feature Detection (ORB)
def feature_detection(image):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    orb = cv2.ORB_create()
    keypoints, _ = orb.detectAndCompute(gray, None)
    output = cv2.drawKeypoints(img, keypoints, None, color=(0, 255, 0), flags=0)
    return cv2_to_pil(output)

# 10. Object Detection (Haar Cascade for cars)
def object_detection(image):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    cars = car_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
    output = img.copy()
    for (x, y, w, h) in cars:
        cv2.rectangle(output, (x, y), (x+w, y+h), (0, 255, 0), 2)
    return cv2_to_pil(output)

# 11. Face Detection
def face_detection(image):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
    output = img.copy()
    for (x, y, w, h) in faces:
        cv2.rectangle(output, (x, y), (x+w, y+h), (0, 255, 0), 2)
    return cv2_to_pil(output)

# 12. Image Segmentation (GrabCut)
def image_segmentation(image):
    img = pil_to_cv2(image)
    mask = np.zeros(img.shape[:2], np.uint8)
    bgdModel = np.zeros((1, 65), np.float64)
    fgdModel = np.zeros((1, 65), np.float64)
    rect = (50, 50, img.shape[1]-50, img.shape[0]-50)
    cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)
    mask2 = np.where((mask == 2) | (mask == 0), 0, 1).astype('uint8')
    output = img * mask2[:, :, np.newaxis]
    return cv2_to_pil(output)

# 13. Motion Analysis (Optical Flow)
def optical_flow(video):
    cap = cv2.VideoCapture(video)
    ret, frame1 = cap.read()
    if not ret:
        cap.release()
        return None
    prvs = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
    hsv = np.zeros_like(frame1)
    hsv[..., 1] = 255
    ret, frame2 = cap.read()
    if not ret:
        cap.release()
        return cv2_to_pil(frame1)
    next = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
    flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
    mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
    hsv[..., 0] = ang * 180 / np.pi / 2
    hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
    output = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    cap.release()
    return cv2_to_pil(output)

# 14. Camera Calibration (Simplified)
def camera_calibration(image):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    chessboard_size = (9, 6)
    ret, corners = cv2.findChessboardCorners(gray, chessboard_size, None)
    output = img.copy()
    if ret:
        cv2.drawChessboardCorners(output, chessboard_size, corners, ret)
    return cv2_to_pil(output)

# 15. Stereo Vision (Simplified Disparity Map)
def stereo_vision(image):
    img = pil_to_cv2(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)
    disparity = stereo.compute(gray, gray)  # Simplified: using same image
    disparity = cv2.normalize(disparity, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
    return cv2_to_pil(disparity)

# 16. Background Subtraction
def background_subtraction(video):
    cap = cv2.VideoCapture(video)
    fgbg = cv2.createBackgroundSubtractorMOG2()
    ret, frame = cap.read()
    if not ret:
        cap.release()
        return None
    fgmask = fgbg.apply(frame)
    output = cv2.cvtColor(fgmask, cv2.COLOR_GRAY2BGR)
    cap.release()
    return cv2_to_pil(output)

# 17. Image Stitching
def image_stitching(image1, image2):
    img1 = pil_to_cv2(image1)
    img2 = pil_to_cv2(image2)
    gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
    orb = cv2.ORB_create()
    kp1, des1 = orb.detectAndCompute(gray1, None)
    kp2, des2 = orb.detectAndCompute(gray2, None)
    bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    matches = bf.match(des1, des2)
    matches = sorted(matches, key=lambda x: x.distance)
    good_matches = matches[:10]
    src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
    dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
    M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    h, w = img1.shape[:2]
    result = cv2.warpPerspective(img2, M, (w * 2, h))
    result[0:h, 0:w] = img1
    return cv2_to_pil(result)

# 18. Machine Learning (K-Means)
def kmeans_clustering(image, k):
    img = pil_to_cv2(image)
    Z = img.reshape((-1, 3))
    Z = np.float32(Z)
    criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
    _, label, center = cv2.kmeans(Z, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
    center = np.uint8(center)
    res = center[label.flatten()]
    output = res.reshape(img.shape)
    return cv2_to_pil(output)

# 19. Deep Learning (MobileNet SSD)
def deep_learning(image, prototxt_file, model_file):
    if prototxt_file is None or model_file is None:
        return None  # Model files must be uploaded
    img = pil_to_cv2(image)
    net = cv2.dnn.readNetFromCaffe(prototxt_file.file.name, model_file.file.name)
    blob = cv2.dnn.blobFromImage(cv2.resize(img, (300, 300)), 0.007843, (300, 300), 127.5)
    net.setInput(blob)
    detections = net.forward()
    output = img.copy()
    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > 0.5:
            box = detections[0, 0, i, 3:7] * np.array([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
            (startX, startY, endX, endY) = box.astype("int")
            cv2.rectangle(output, (startX, startY), (endX, endY), (0, 255, 0), 2)
    return cv2_to_pil(output)

# 20. Drawing and Text
def drawing_text(image, shape, text):
    img = pil_to_cv2(image)
    output = img.copy()
    h, w = img.shape[:2]
    if shape == "Rectangle":
        cv2.rectangle(output, (50, 50), (w-50, h-50), (0, 255, 0), 2)
    elif shape == "Circle":
        cv2.circle(output, (w//2, h//2), 50, (0, 255, 0), 2)
    cv2.putText(output, text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
    return cv2_to_pil(output)