import gradio as gr from cv_functions.functions import ( image_video_io, color_space_conversion, resize_crop, geometric_transform, thresholding, edge_detection, image_filtering, contour_detection, feature_detection, object_detection, face_detection, image_segmentation, optical_flow, camera_calibration, stereo_vision, background_subtraction, image_stitching, kmeans_clustering, deep_learning, drawing_text ) # Custom CSS with Tailwind custom_css = """ """ # Gradio interface with gr.Blocks(css=custom_css) as demo: gr.HTML("

OpenCV Comprehensive Demo

") gr.Markdown("Explore all OpenCV features by uploading images or videos and selecting a tab below.", elem_classes=["markdown-style"]) with gr.Tabs(): # 1. Image and Video I/O with gr.TabItem("Image/Video I/O", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Upload an image or video to display.", elem_classes=["input-label"]) io_image = gr.Image(label="Upload Image", type="pil") io_video = gr.Video(label="Upload Video") io_button = gr.Button("Display", elem_classes="btn-primary") with gr.Column(): io_output = gr.Gallery(label="Output") io_button.click(fn=image_video_io, inputs=[io_image, io_video], outputs=io_output) # 2. Color Space Conversion with gr.TabItem("Color Space Conversion", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Convert between RGB, HSV, and LAB color spaces.", elem_classes=["input-label"]) cs_image = gr.Image(label="Upload Image", type="pil") cs_space = gr.Dropdown(choices=["RGB", "HSV", "LAB"], label="Color Space", value="RGB") cs_button = gr.Button("Apply Conversion", elem_classes="btn-primary") with gr.Column(): cs_output = gr.Image(label="Converted Image") cs_button.click(fn=color_space_conversion, inputs=[cs_image, cs_space], outputs=cs_output) # 3. Image Resizing and Cropping with gr.TabItem("Resizing and Cropping", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Resize or crop the image.", elem_classes=["input-label"]) rc_image = gr.Image(label="Upload Image", type="pil") rc_scale = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Scale Factor") rc_crop_x = gr.Slider(0, 1, value=0, step=0.1, label="Crop X (relative)") rc_crop_y = gr.Slider(0, 1, value=0, step=0.1, label="Crop Y (relative)") rc_crop_w = gr.Slider(0, 1, value=0.5, step=0.1, label="Crop Width (relative)") rc_crop_h = gr.Slider(0, 1, value=0.5, step=0.1, label="Crop Height (relative)") rc_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): rc_output = gr.Gallery(label="Resized and Cropped Images") rc_button.click(fn=resize_crop, inputs=[rc_image, rc_scale, rc_crop_x, rc_crop_y, rc_crop_w, rc_crop_h], outputs=rc_output) # 4. Geometric Transformations with gr.TabItem("Geometric Transformations", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Apply rotation and translation.", elem_classes=["input-label"]) gt_image = gr.Image(label="Upload Image", type="pil") gt_angle = gr.Slider(-180, 180, value=0, step=1, label="Rotation Angle (degrees)") gt_tx = gr.Slider(-100, 100, value=0, step=1, label="Translation X (pixels)") gt_ty = gr.Slider(-100, 100, value=0, step=1, label="Translation Y (pixels)") gt_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): gt_output = gr.Image(label="Transformed Image") gt_button.click(fn=geometric_transform, inputs=[gt_image, gt_angle, gt_tx, gt_ty], outputs=gt_output) # 5. Image Thresholding with gr.TabItem("Thresholding", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Apply global or adaptive thresholding.", elem_classes=["input-label"]) thresh_image = gr.Image(label="Upload Image", type="pil") thresh_type = gr.Dropdown(choices=["Global", "Adaptive"], label="Threshold Type", value="Global") thresh_value = gr.Slider(0, 255, value=127, step=1, label="Threshold Value") thresh_block = gr.Slider(3, 21, value=11, step=2, label="Block Size (Adaptive)") thresh_C = gr.Slider(-10, 10, value=2, step=1, label="Constant (Adaptive)") thresh_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): thresh_output = gr.Image(label="Thresholded Image") thresh_button.click(fn=thresholding, inputs=[thresh_image, thresh_type, thresh_value, thresh_block, thresh_C], outputs=thresh_output) # 6. Edge Detection with gr.TabItem("Edge Detection", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect edges using Canny, Sobel, or Laplacian.", elem_classes=["input-label"]) edge_image = gr.Image(label="Upload Image", type="pil") edge_type = gr.Dropdown(choices=["Canny", "Sobel", "Laplacian"], label="Edge Type", value="Canny") edge_t1 = gr.Slider(0, 500, value=100, step=10, label="Canny Threshold 1") edge_t2 = gr.Slider(0, 500, value=200, step=10, label="Canny Threshold 2") edge_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): edge_output = gr.Image(label="Edges") edge_button.click(fn=edge_detection, inputs=[edge_image, edge_type, edge_t1, edge_t2], outputs=edge_output) # 7. Image Filtering with gr.TabItem("Image Filtering", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Apply Gaussian or median blur.", elem_classes=["input-label"]) filter_image = gr.Image(label="Upload Image", type="pil") filter_type = gr.Dropdown(choices=["Gaussian", "Median"], label="Filter Type", value="Gaussian") filter_kernel = gr.Slider(3, 21, value=5, step=2, label="Kernel Size") filter_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): filter_output = gr.Image(label="Filtered Image") filter_button.click(fn=image_filtering, inputs=[filter_image, filter_type, filter_kernel], outputs=filter_output) # 8. Contour Detection with gr.TabItem("Contour Detection", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect and draw contours.", elem_classes=["input-label"]) contour_image = gr.Image(label="Upload Image", type="pil") contour_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): contour_output = gr.Image(label="Contours") contour_button.click(fn=contour_detection, inputs=contour_image, outputs=contour_output) # 9. Feature Detection with gr.TabItem("Feature Detection", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect ORB keypoints.", elem_classes=["input-label"]) feat_image = gr.Image(label="Upload Image", type="pil") feat_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): feat_output = gr.Image(label="Keypoints") feat_button.click(fn=feature_detection, inputs=feat_image, outputs=feat_output) # 10. Object Detection with gr.TabItem("Object Detection", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect cars using Haar Cascade.", elem_classes=["input-label"]) obj_image = gr.Image(label="Upload Image", type="pil") obj_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): obj_output = gr.Image(label="Detected Objects") obj_button.click(fn=object_detection, inputs=obj_image, outputs=obj_output) # 11. Face Detection with gr.TabItem("Face Detection", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect faces using Haar Cascade.", elem_classes=["input-label"]) face_image = gr.Image(label="Upload Image", type="pil") face_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): face_output = gr.Image(label="Detected Faces") face_button.click(fn=face_detection, inputs=face_image, outputs=face_output) # 12. Image Segmentation with gr.TabItem("Image Segmentation", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Apply GrabCut segmentation.", elem_classes=["input-label"]) seg_image = gr.Image(label="Upload Image", type="pil") seg_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): seg_output = gr.Image(label="Segmented Image") seg_button.click(fn=image_segmentation, inputs=seg_image, outputs=seg_output) # 13. Motion Analysis with gr.TabItem("Motion Analysis", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Compute optical flow for video.", elem_classes=["input-label"]) motion_video = gr.Video(label="Upload Video") motion_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): motion_output = gr.Image(label="Optical Flow") motion_button.click(fn=optical_flow, inputs=motion_video, outputs=motion_output) # 14. Camera Calibration with gr.TabItem("Camera Calibration", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect checkerboard for calibration (upload checkerboard image).", elem_classes=["input-label"]) calib_image = gr.Image(label="Upload Image", type="pil") calib_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): calib_output = gr.Image(label="Calibration Result") calib_button.click(fn=camera_calibration, inputs=calib_image, outputs=calib_output) # 15. Stereo Vision with gr.TabItem("Stereo Vision", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Compute disparity map (simplified).", elem_classes=["input-label"]) stereo_image = gr.Image(label="Upload Image", type="pil") stereo_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): stereo_output = gr.Image(label="Disparity Map") stereo_button.click(fn=stereo_vision, inputs=stereo_image, outputs=stereo_output) # 16. Background Subtraction with gr.TabItem("Background Subtraction", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Apply MOG2 for moving object detection.", elem_classes=["input-label"]) bg_video = gr.Video(label="Upload Video") bg_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): bg_output = gr.Image(label="Foreground Mask") bg_button.click(fn=background_subtraction, inputs=bg_video, outputs=bg_output) # 17. Image Stitching with gr.TabItem("Image Stitching", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Stitch two images using ORB features.", elem_classes=["input-label"]) stitch_image1 = gr.Image(label="Upload First Image", type="pil") stitch_image2 = gr.Image(label="Upload Second Image", type="pil") stitch_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): stitch_output = gr.Image(label="Stitched Image") stitch_button.click(fn=image_stitching, inputs=[stitch_image1, stitch_image2], outputs=stitch_output) # 18. Machine Learning (K-Means) with gr.TabItem("K-Means Clustering", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Apply k-means clustering for color quantization.", elem_classes=["input-label"]) kmeans_image = gr.Image(label="Upload Image", type="pil") kmeans_k = gr.Slider(2, 16, value=8, step=1, label="Number of Clusters (K)") kmeans_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): kmeans_output = gr.Image(label="Clustered Image") kmeans_button.click(fn=kmeans_clustering, inputs=[kmeans_image, kmeans_k], outputs=kmeans_output) # 19. Deep Learning with gr.TabItem("Deep Learning", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Detect objects using MobileNet SSD (upload prototxt and caffemodel files).", elem_classes=["input-label"]) dl_image = gr.Image(label="Upload Image", type="pil") dl_prototxt = gr.File(label="Upload Prototxt File") dl_model = gr.File(label="Upload Caffemodel File") dl_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): dl_output = gr.Image(label="Detected Objects") dl_button.click(fn=deep_learning, inputs=[dl_image, dl_prototxt, dl_model], outputs=dl_output) # 20. Drawing and Text with gr.TabItem("Drawing and Text", elem_classes="tab-button"): with gr.Row(): with gr.Column(): gr.Markdown("Draw shapes and add text to the image.", elem_classes=["input-label"]) draw_image = gr.Image(label="Upload Image", type="pil") draw_shape = gr.Dropdown(choices=["Rectangle", "Circle"], label="Shape", value="Rectangle") draw_text = gr.Textbox(label="Text to Add", value="OpenCV") draw_button = gr.Button("Apply", elem_classes="btn-primary") with gr.Column(): draw_output = gr.Image(label="Annotated Image") draw_button.click(fn=drawing_text, inputs=[draw_image, draw_shape, draw_text], outputs=draw_output) if __name__ == "__main__": demo.launch()