Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import dataclasses
|
2 |
import json
|
3 |
from pathlib import Path
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
from PIL import Image
|
@@ -54,6 +54,11 @@ def create_demo(
|
|
54 |
device = torch.device(device)
|
55 |
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
56 |
|
|
|
|
|
|
|
|
|
|
|
57 |
# Load models with consistent dtype
|
58 |
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=dtype).to(device)
|
59 |
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
|
|
|
1 |
import dataclasses
|
2 |
import json
|
3 |
from pathlib import Path
|
4 |
+
import os
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
from PIL import Image
|
|
|
54 |
device = torch.device(device)
|
55 |
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
56 |
|
57 |
+
# Set Number CPU core is maximum
|
58 |
+
num_cpu_cores = os.cpu_count() # Adjust based on your system
|
59 |
+
os.environ["OMP_NUM_THREADS"] = str(num_cpu_cores)
|
60 |
+
torch.set_num_threads(num_cpu_cores)
|
61 |
+
|
62 |
# Load models with consistent dtype
|
63 |
vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=dtype).to(device)
|
64 |
tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
|