danhtran2mind commited on
Commit
8a01f4e
·
verified ·
1 Parent(s): 696708b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -78,7 +78,7 @@ def get_examples(examples_dir: str = "assets/examples/ghibli-fine-tuned-sd-2.1")
78
  return ans
79
 
80
  def create_demo(
81
- model_name: str = "danhtran2mind/ghibli-fine-tuned-sd-2.1",
82
  device: str = "cuda" if torch.cuda.is_available() else "cpu",
83
  ):
84
  # Convert device string to torch.device
@@ -179,13 +179,13 @@ def create_demo(
179
 
180
  badges_text = r"""
181
  <div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
182
- <a href="https://huggingface.co/spaces/danhtran2mind/ghibli-fine-tuned-sd-2.1"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Space&color=orange"></a>
183
  </div>
184
  """.strip()
185
 
186
  with gr.Blocks() as demo:
187
  gr.Markdown("# Ghibli-Style Image Generator")
188
- gr.Markdown(badges_text)
189
  gr.Markdown("Generate images in Ghibli style using a fine-tuned Stable Diffusion model. Select an example below to load a pre-generated image or enter a prompt to generate a new one.")
190
  gr.Markdown("""**Note:** For CPU inference, execution time is long (e.g., for resolution 512 × 512) with 50 inference steps, time is approximately 1,700 seconds for 1 CPU core and 1,200 seconds for 2 CPUs).""")
191
 
@@ -231,7 +231,7 @@ if __name__ == "__main__":
231
  default=False, metadata={"help": "Use local model path instead of Hugging Face model."}
232
  )
233
  model_name: str = dataclasses.field(
234
- default="danhtran2mind/ghibli-fine-tuned-sd-2.1",
235
  metadata={"help": "Model name or path for the fine-tuned Stable Diffusion model."}
236
  )
237
  device: str = dataclasses.field(
@@ -251,7 +251,7 @@ if __name__ == "__main__":
251
 
252
  # Set model_name based on local_model flag
253
  if args.local_model:
254
- args.model_name = "ghibli-fine-tuned-sd-2.1"
255
 
256
  demo = create_demo(args.model_name, args.device)
257
  demo.launch(server_port=args.port, share=args.share)
 
78
  return ans
79
 
80
  def create_demo(
81
+ model_name: str = "danhtran2mind/Ghibli-Stable-Diffusion-2.1-Base-finetuning",
82
  device: str = "cuda" if torch.cuda.is_available() else "cpu",
83
  ):
84
  # Convert device string to torch.device
 
179
 
180
  badges_text = r"""
181
  <div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
182
+ <a href="https://huggingface.co/spaces/danhtran2mind/Ghibli-Stable-Diffusion-Synthesis"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Space&color=orange"></a>
183
  </div>
184
  """.strip()
185
 
186
  with gr.Blocks() as demo:
187
  gr.Markdown("# Ghibli-Style Image Generator")
188
+ gr.HTML(badges_text)
189
  gr.Markdown("Generate images in Ghibli style using a fine-tuned Stable Diffusion model. Select an example below to load a pre-generated image or enter a prompt to generate a new one.")
190
  gr.Markdown("""**Note:** For CPU inference, execution time is long (e.g., for resolution 512 × 512) with 50 inference steps, time is approximately 1,700 seconds for 1 CPU core and 1,200 seconds for 2 CPUs).""")
191
 
 
231
  default=False, metadata={"help": "Use local model path instead of Hugging Face model."}
232
  )
233
  model_name: str = dataclasses.field(
234
+ default="danhtran2mind/Ghibli-Stable-Diffusion-2.1-Base-finetuning",
235
  metadata={"help": "Model name or path for the fine-tuned Stable Diffusion model."}
236
  )
237
  device: str = dataclasses.field(
 
251
 
252
  # Set model_name based on local_model flag
253
  if args.local_model:
254
+ args.model_name = "Ghibli-Stable-Diffusion-2.1-Base-finetuning"
255
 
256
  demo = create_demo(args.model_name, args.device)
257
  demo.launch(server_port=args.port, share=args.share)