danhtran2mind commited on
Commit
9772dfa
·
verified ·
1 Parent(s): 08653ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +196 -20
app.py CHANGED
@@ -1,33 +1,209 @@
1
- if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
2
  from transformers import HfArgumentParser
3
 
4
- @dataclasses.dataclass
5
- class AppArgs:
6
- local_model: bool = dataclasses.field(
7
- default=True, metadata={"help": "Use local model path instead of Hugging Face model."}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  )
9
- model_name: str = dataclasses.field(
10
- default="danhtran2mind/ghibli-fine-tuned-sd-2.1",
11
- metadata={"help": "Model name or path for the fine-tuned Stable Diffusion model."}
 
 
 
12
  )
13
- device: str = dataclasses.field(
14
- default="cuda" if torch.cuda.is_available() else "cpu",
15
- metadata={"help": "Device to run the model on (e.g., 'cuda', 'cpu')."}
 
 
 
 
 
 
 
16
  )
17
- port: int = dataclasses.field(
18
- default=7860, metadata={"help": "Port to run the Gradio app on."}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  )
20
- share: bool = dataclasses.field(
21
- default=False, metadata={"help": "Set to True for public sharing (Hugging Face Spaces)."}
 
 
 
22
  )
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  parser = HfArgumentParser([AppArgs])
25
  args_tuple = parser.parse_args_into_dataclasses()
26
  args = args_tuple[0]
27
 
28
- # Set model_name based on local_model flag
29
- if args.local_model:
30
- args.model_name = "ghibli-fine-tuned-sd-2.1"
31
-
32
  demo = create_demo(args.model_name, args.device)
33
- demo.launch(server_port=args.port, share=args.share)
 
 
 
1
+ import dataclasses
2
+ import json
3
+ from pathlib import Path
4
+
5
+ import gradio as gr
6
+ import torch
7
+ from PIL import Image
8
+ import numpy as np
9
+ from transformers import CLIPTextModel, CLIPTokenizer
10
+ from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler
11
+ from tqdm import tqdm
12
  from transformers import HfArgumentParser
13
 
14
+ def get_examples(examples_dir: str = "assets/examples") -> list:
15
+ """
16
+ Load example data from the assets/examples directory.
17
+ Each example is a subdirectory containing a config.json and an image file.
18
+ Returns a list of [prompt, height, width, num_inference_steps, guidance_scale, seed, image_path].
19
+ """
20
+ examples = Path(examples_dir)
21
+ ans = []
22
+ for example in examples.iterdir():
23
+ if not example.is_dir():
24
+ continue
25
+ with open(example / "config.json") as f:
26
+ example_dict = json.load(f)
27
+
28
+ required_keys = ["prompt", "height", "width", "num_inference_steps", "guidance_scale", "seed", "image"]
29
+ if not all(key in example_dict for key in required_keys):
30
+ continue
31
+
32
+ example_list = [
33
+ example_dict["prompt"],
34
+ example_dict["height"],
35
+ example_dict["width"],
36
+ example_dict["num_inference_steps"],
37
+ example_dict["guidance_scale"],
38
+ example_dict["seed"],
39
+ str(example / example_dict["image"]) # Path to the image file
40
+ ]
41
+ ans.append(example_list)
42
+
43
+ if not ans:
44
+ ans = [
45
+ ["a serene landscape in Ghibli style", 64, 64, 50, 3.5, 42, None]
46
+ ]
47
+ return ans
48
+
49
+ def create_demo(
50
+ model_name: str = "danhtran2mind/ghibli-fine-tuned-sd-2.1",
51
+ device: str = "cuda" if torch.cuda.is_available() else "cpu",
52
+ ):
53
+ # Convert device string to torch.device
54
+ device = torch.device(device)
55
+ dtype = torch.float16 if device.type == "cuda" else torch.float32
56
+
57
+ # Load models with consistent dtype
58
+ vae = AutoencoderKL.from_pretrained(model_name, subfolder="vae", torch_dtype=dtype).to(device)
59
+ tokenizer = CLIPTokenizer.from_pretrained(model_name, subfolder="tokenizer")
60
+ text_encoder = CLIPTextModel.from_pretrained(model_name, subfolder="text_encoder", torch_dtype=dtype).to(device)
61
+ unet = UNet2DConditionModel.from_pretrained(model_name, subfolder="unet", torch_dtype=dtype).to(device)
62
+ scheduler = PNDMScheduler.from_pretrained(model_name, subfolder="scheduler")
63
+
64
+ def generate_image(prompt, height, width, num_inference_steps, guidance_scale, seed, random_seed):
65
+ if not prompt:
66
+ return None, "Prompt cannot be empty."
67
+ if height % 8 != 0 or width % 8 != 0:
68
+ return None, "Height and width must be divisible by 8 (e.g., 256, 512, 1024)."
69
+ if num_inference_steps < 1 or num_inference_steps > 100:
70
+ return None, "Number of inference steps must be between 1 and 100."
71
+ if guidance_scale < 1.0 or guidance_scale > 20.0:
72
+ return None, "Guidance scale must be between 1.0 and 20.0."
73
+ if seed < 0 or seed > 4294967295:
74
+ return None, "Seed must be between 0 and 4294967295."
75
+
76
+ batch_size = 1
77
+ if random_seed:
78
+ seed = torch.randint(0, 4294967295, (1,)).item()
79
+ generator = torch.Generator(device=device).manual_seed(int(seed))
80
+
81
+ text_input = tokenizer(
82
+ [prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt"
83
  )
84
+ with torch.no_grad():
85
+ text_embeddings = text_encoder(text_input.input_ids.to(device))[0].to(dtype=dtype)
86
+
87
+ max_length = text_input.input_ids.shape[-1]
88
+ uncond_input = tokenizer(
89
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
90
  )
91
+ with torch.no_grad():
92
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0].to(dtype=dtype)
93
+
94
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
95
+
96
+ latents = torch.randn(
97
+ (batch_size, unet.config.in_channels, height // 8, width // 8),
98
+ generator=generator,
99
+ dtype=dtype,
100
+ device=device
101
  )
102
+
103
+ scheduler.set_timesteps(num_inference_steps)
104
+ latents = latents * scheduler.init_noise_sigma
105
+
106
+ for t in tqdm(scheduler.timesteps, desc="Generating image"):
107
+ latent_model_input = torch.cat([latents] * 2)
108
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
109
+
110
+ with torch.no_grad():
111
+ if device.type == "cuda":
112
+ with torch.autocast(device_type="cuda", dtype=torch.float16):
113
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
114
+ else:
115
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
116
+
117
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
118
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
119
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
120
+
121
+ with torch.no_grad():
122
+ latents = latents / vae.config.scaling_factor
123
+ image = vae.decode(latents).sample
124
+
125
+ image = (image / 2 + 0.5).clamp(0, 1)
126
+ image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
127
+ image = (image * 255).round().astype("uint8")
128
+ pil_image = Image.fromarray(image[0])
129
+
130
+ return pil_image, f"Image generated successfully! Seed used: {seed}"
131
+
132
+ def load_example_image(prompt, height, width, num_inference_steps, guidance_scale, seed, image_path):
133
+ """
134
+ Load the image for the selected example and update input fields.
135
+ """
136
+ if image_path and Path(image_path).exists():
137
+ try:
138
+ image = Image.open(image_path)
139
+ return prompt, height, width, num_inference_steps, guidance_scale, seed, image, f"Loaded image: {image_path}"
140
+ except Exception as e:
141
+ return prompt, height, width, num_inference_steps, guidance_scale, seed, None, f"Error loading image: {e}"
142
+ return prompt, height, width, num_inference_steps, guidance_scale, seed, None, "No image available"
143
+
144
+ badges_text = r"""
145
+ <div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
146
+ <a href="https://huggingface.co/spaces/danhtran2mind/ghibli-fine-tuned-sd-2.1"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Space&color=orange"></a>
147
+ </div>
148
+ """.strip()
149
+
150
+ with gr.Blocks() as demo:
151
+ gr.Markdown("# Ghibli-Style Image Generator")
152
+ gr.Markdown(badges_text)
153
+ gr.Markdown("Generate images in Ghibli style using a fine-tuned Stable Diffusion model. Select an example below to load a pre-generated image or enter a prompt to generate a new one.")
154
+ gr.Markdown("""**Note:** For CPU inference, execution time is long (e.g., for resolution 512 × 512) with 50 inference steps, time is approximately 1700 seconds).""")
155
+
156
+ with gr.Row():
157
+ with gr.Column():
158
+ prompt = gr.Textbox(label="Prompt", placeholder="e.g., 'a serene landscape in Ghibli style'")
159
+ with gr.Row():
160
+ width = gr.Slider(32, 4096, 512, step=8, label="Generation Width")
161
+ height = gr.Slider(32, 4096, 512, step=8, label="Generation Height")
162
+ with gr.Accordion("Advanced Options", open=False):
163
+ num_inference_steps = gr.Slider(1, 100, 50, step=1, label="Number of Inference Steps")
164
+ guidance_scale = gr.Slider(1.0, 20.0, 3.5, step=0.5, label="Guidance Scale")
165
+ seed = gr.Number(42, label="Seed (0 to 4294967295)")
166
+ random_seed = gr.Checkbox(label="Use Random Seed", value=False)
167
+ generate_btn = gr.Button("Generate Image")
168
+
169
+ with gr.Column():
170
+ output_image = gr.Image(label="Generated Image")
171
+ output_text = gr.Textbox(label="Status")
172
+
173
+ examples = get_examples("assets/examples")
174
+ gr.Examples(
175
+ examples=examples,
176
+ inputs=[prompt, height, width, num_inference_steps, guidance_scale, seed, output_image],
177
+ outputs=[prompt, height, width, num_inference_steps, guidance_scale, seed, output_image, output_text],
178
+ fn=load_example_image,
179
+ cache_examples=False
180
  )
181
+
182
+ generate_btn.click(
183
+ fn=generate_image,
184
+ inputs=[prompt, height, width, num_inference_steps, guidance_scale, seed, random_seed],
185
+ outputs=[output_image, output_text]
186
  )
187
 
188
+ return demo
189
+
190
+ if __name__ == "__main__":
191
+
192
+ @dataclasses.dataclass
193
+ class AppArgs:
194
+ if local_model == True:
195
+ model_name: str = "ghibli-fine-tuned-sd-2.1"
196
+ else:
197
+ model_name: str = "danhtran2mind/ghibli-fine-tuned-sd-2.1"
198
+ device: str = "cuda" if torch.cuda.is_available() else "cpu"
199
+ port: int = 7860
200
+ share: bool = False # Set to True for public sharing (Hugging Face Spaces)
201
+
202
  parser = HfArgumentParser([AppArgs])
203
  args_tuple = parser.parse_args_into_dataclasses()
204
  args = args_tuple[0]
205
 
 
 
 
 
206
  demo = create_demo(args.model_name, args.device)
207
+ demo.launch(server_port=args.port, share=args.share)
208
+
209
+ <<add option choose local_model when run app.py>>