File size: 10,064 Bytes
bda2b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
988e855
 
bda2b5b
988e855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda2b5b
988e855
 
bda2b5b
988e855
 
 
 
 
 
 
 
bda2b5b
988e855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda2b5b
 
988e855
 
 
bda2b5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Differential visualization enhancements for Tibetan legal manuscript analysis.
Provides enhanced heatmaps with structural change highlighting.
"""

import plotly.graph_objects as go
from typing import Dict, List
import pandas as pd
from .structural_analysis import detect_structural_changes, generate_structural_alignment


def create_differential_heatmap(texts_dict: Dict[str, str], 
                               chapter_key: str,
                               metric_results: pd.DataFrame,
                               highlight_threshold: float = 0.7) -> go.Figure:
    """
    Create enhanced heatmap with structural change highlighting.
    
    Args:
        texts_dict: Dictionary mapping text names to their content
        chapter_key: Chapter identifier being analyzed
        metric_results: DataFrame with similarity metrics
        highlight_threshold: Threshold for highlighting significant changes
    """
    
    # Get unique text pairs
    text_pairs = metric_results['Text Pair'].unique()
    
    # Create enhanced heatmap data
    enhanced_data = []
    
    for pair in text_pairs:
        texts = pair.split(' vs ')
        if len(texts) == 2:
            text1_name, text2_name = texts
            
            # Get actual text content
            text1_content = texts_dict.get(text1_name, '')
            text2_content = texts_dict.get(text2_name, '')
            
            # Perform structural analysis
            changes = detect_structural_changes(text1_content, text2_content)
            alignment = generate_structural_alignment(text1_content, text2_content)
            
            # Create enhanced metrics
            enhanced_row = {
                'Text Pair': pair,
                'Chapter': chapter_key,
                'structural_changes': len(changes['insertions']) + len(changes['deletions']) + len(changes['modifications']),
                'modification_score': len(changes['modifications']),
                'insertion_score': len(changes['insertions']),
                'deletion_score': len(changes['deletions']),
                'alignment_quality': len(alignment['matches']) / max(len(alignment['segments1']) + len(alignment['segments2']), 1),
                'significant_differences': len([c for c in changes['modifications'] if len(c['original']) > 10])
            }
            
            enhanced_data.append(enhanced_row)
    
    # Create a clean table with numbers and percentages
    summary_table = []
    
    for row in enhanced_data:
        text_pair = row['Text Pair']
        chapter = row['Chapter']
        
        # Calculate percentages
        total_changes = row['structural_changes']
        modifications = row['modification_score']
        insertions_deletions = row['insertion_score'] + row['deletion_score']
        alignment_quality = row['alignment_quality']
        
        # Create summary row
        summary_row = {
            'Text Pair': text_pair,
            'Chapter': chapter,
            'Total Changes': total_changes,
            'Modifications': modifications,
            'Insertions/Deletions': insertions_deletions,
            'Alignment Quality': f"{alignment_quality:.1f}%",
            'Significant Differences': row['significant_differences']
        }
        
        summary_table.append(summary_row)
    
    # Create DataFrame for table display
    summary_df = pd.DataFrame(summary_table)
    
    # Create a simple table with styling
    fig = go.Figure(data=[go.Table(
        header=dict(
            values=['Text Pair', 'Chapter', 'Total Changes', 'Modifications', 
                   'Insertions/Deletions', 'Alignment Quality', 'Significant Differences'],
            font=dict(size=12, color='white'),
            fill_color='darkblue',
            align='left'
        ),
        cells=dict(
            values=[
                summary_df['Text Pair'],
                summary_df['Chapter'], 
                summary_df['Total Changes'],
                summary_df['Modifications'],
                summary_df['Insertions/Deletions'],
                summary_df['Alignment Quality'],
                summary_df['Significant Differences']
            ],
            font=dict(size=11),
            align='left',
            fill_color=['lightgrey' if i % 2 == 0 else 'white' 
                       for i in range(len(summary_df))]
        )
    )])
    
    fig.update_layout(
        title="Structural Analysis Summary",
        height=400,
        margin=dict(l=10, r=10, t=40, b=10)
    )
    
    return fig


def create_change_detection_report(texts_dict: Dict[str, str],
                                 chapter_key: str,
                                 output_format: str = 'html') -> str:
    """
    Create detailed change detection report for a chapter.
    
    Args:
        texts_dict: Dictionary mapping text names to content
        chapter_key: Chapter identifier
        output_format: Format for output ('html', 'json', 'markdown')
    """
    
    from .structural_analysis import generate_differential_report
    
    text_names = list(texts_dict.keys())
    reports = []
    
    for i, text1_name in enumerate(text_names):
        for text2_name in text_names[i+1:]:
            text1_content = texts_dict[text1_name]
            text2_content = texts_dict[text2_name]
            
            report = generate_differential_report(
                text1_content, text2_content, text1_name, text2_name
            )
            reports.append(report)
    
    if output_format == 'html':
        return create_html_report(reports, chapter_key)
    elif output_format == 'json':
        import json
        return json.dumps(reports, indent=2, ensure_ascii=False)
    else:
        return create_markdown_report(reports, chapter_key)


def create_html_report(reports: List[Dict], chapter_key: str) -> str:
    """Create HTML report for structural analysis."""
    
    html = f"""
    <!DOCTYPE html>
    <html>
    <head>
        <title>Structural Analysis Report - Chapter {chapter_key}</title>
        <style>
            body {{ font-family: Arial, sans-serif; margin: 20px; }}
            .report {{ max-width: 1200px; margin: 0 auto; }}
            .comparison {{ border: 1px solid #ddd; margin: 20px 0; padding: 15px; }}
            .changes {{ display: flex; gap: 20px; }}
            .change-type {{ flex: 1; padding: 10px; border: 1px solid #eee; }}
            .insertion {{ background-color: #e8f5e8; }}
            .deletion {{ background-color: #ffe8e8; }}
            .modification {{ background-color: #fff3e0; }}
            .highlight {{ background-color: yellow; padding: 2px 4px; }}
        </style>
    </head>
    <body>
        <div class="report">
            <h1>Structural Analysis Report - Chapter {chapter_key}</h1>
    """
    
    for report in reports:
        html += f"""
            <div class="comparison">
                <h2>{report['file1']} vs {report['file2']}</h2>
                <div class="scores">
                    <p><strong>Structural Similarity:</strong> {report['scores']['structural_similarity']:.2f}</p>
                    <p><strong>Alignment Score:</strong> {report['scores']['alignment_score']:.2f}</p>
                </div>
                
                <div class="changes">
                    <div class="change-type insertion">
                        <h3>Insertions ({len(report['changes']['insertions'])})</h3>
                        {format_changes_html(report['changes']['insertions'])}
                    </div>
                    <div class="change-type deletion">
                        <h3>Deletions ({len(report['changes']['deletions'])})</h3>
                        {format_changes_html(report['changes']['deletions'])}
                    </div>
                    <div class="change-type modification">
                        <h3>Modifications ({len(report['changes']['modifications'])})</h3>
                        {format_changes_html(report['changes']['modifications'], is_modification=True)}
                    </div>
                </div>
            </div>
        """
    
    html += """
        </div>
    </body>
    </html>
    """
    
    return html


def format_changes_html(changes: List[Dict], is_modification: bool = False) -> str:
    """Format changes for HTML display."""
    if not changes:
        return "<p>No changes detected.</p>"
    
    html = ""
    for change in changes[:5]:  # Limit to first 5 for brevity
        if is_modification:
            html += f"""
            <div class="change">
                <span class="highlight">{change.get('original', '')}</span> β†’ 
                <span class="highlight">{change.get('replacement', '')}</span>
            </div>
            """
        else:
            html += f"""
            <div class="change">
                <span class="highlight">{change.get('word', '')}</span>
            </div>
            """
    
    if len(changes) > 5:
        html += f"<p>... and {len(changes) - 5} more</p>"
    
    return html


def create_markdown_report(reports: List[Dict], chapter_key: str) -> str:
    """Create markdown report for structural analysis."""
    
    md = f"# Structural Analysis Report - Chapter {chapter_key}\n\n"
    
    for report in reports:
        md += f"## {report['file1']} vs {report['file2']}\n\n"
        md += f"- **Structural Similarity**: {report['scores']['structural_similarity']:.2f}\n"
        md += f"- **Alignment Score**: {report['scores']['alignment_score']:.2f}\n"
        md += f"- **Insertions**: {len(report['changes']['insertions'])}\n"
        md += f"- **Deletions**: {len(report['changes']['deletions'])}\n"
        md += f"- **Modifications**: {len(report['changes']['modifications'])}\n\n"
        
        if report['changes']['modifications']:
            md += "### Significant Modifications:\n"
            for mod in report['changes']['modifications'][:3]:
                md += f"- **{mod.get('original', '')}** β†’ **{mod.get('replacement', '')}**\n"
    
    return md