daniel-wojahn commited on
Commit
28a74a6
·
1 Parent(s): eef12aa

feat(ui): apply consistent padding and scaling across components

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -19,7 +19,7 @@ def main_interface():
19
  with gr.Blocks(
20
  theme=tibetan_theme,
21
  title="Tibetan Text Metrics Web App",
22
- css=tibetan_theme.get_css_string() + ".metric-description { padding: 1.5rem !important; }"
23
  ) as demo:
24
  gr.Markdown(
25
  """# Tibetan Text Metrics Web App
@@ -31,7 +31,7 @@ def main_interface():
31
 
32
  with gr.Row(elem_id="steps-row"):
33
  with gr.Column(scale=1, elem_classes="step-column"):
34
- with gr.Group():
35
  gr.Markdown(
36
  """
37
  ## Step 1: Upload Your Tibetan Text Files
@@ -49,7 +49,7 @@ def main_interface():
49
  elem_classes="gr-markdown"
50
  )
51
  with gr.Column(scale=1, elem_classes="step-column"):
52
- with gr.Group():
53
  gr.Markdown(
54
  """## Step 2: Configure and run the analysis
55
  <span style='font-size:16px;'>Choose your analysis options and click the button below to compute metrics and view results. For meaningful analysis, ensure your texts are segmented by chapter or section using the marker '༈' (<i>sbrul shad</i>). The tool will split files based on this marker.</span>
@@ -245,7 +245,7 @@ Each segment is represented as a vector of these TF-IDF scores, and the cosine s
245
 
246
  # Add the appropriate plot
247
  if metric_key == "Word Counts":
248
- word_count_plot = gr.Plot(label="Word Counts per Segment", show_label=False)
249
  else:
250
  heatmap_tabs[metric_key] = gr.Plot(label=f"Heatmap: {metric_key}", show_label=False)
251
 
 
19
  with gr.Blocks(
20
  theme=tibetan_theme,
21
  title="Tibetan Text Metrics Web App",
22
+ css=tibetan_theme.get_css_string() + ".metric-description, .step-box { padding: 1.5rem !important; }"
23
  ) as demo:
24
  gr.Markdown(
25
  """# Tibetan Text Metrics Web App
 
31
 
32
  with gr.Row(elem_id="steps-row"):
33
  with gr.Column(scale=1, elem_classes="step-column"):
34
+ with gr.Group(elem_classes="step-box"):
35
  gr.Markdown(
36
  """
37
  ## Step 1: Upload Your Tibetan Text Files
 
49
  elem_classes="gr-markdown"
50
  )
51
  with gr.Column(scale=1, elem_classes="step-column"):
52
+ with gr.Group(elem_classes="step-box"):
53
  gr.Markdown(
54
  """## Step 2: Configure and run the analysis
55
  <span style='font-size:16px;'>Choose your analysis options and click the button below to compute metrics and view results. For meaningful analysis, ensure your texts are segmented by chapter or section using the marker '༈' (<i>sbrul shad</i>). The tool will split files based on this marker.</span>
 
245
 
246
  # Add the appropriate plot
247
  if metric_key == "Word Counts":
248
+ word_count_plot = gr.Plot(label="Word Counts per Segment", show_label=False, scale=1, elem_classes="metric-description")
249
  else:
250
  heatmap_tabs[metric_key] = gr.Plot(label=f"Heatmap: {metric_key}", show_label=False)
251