daniel-wojahn commited on
Commit
8d064dc
·
1 Parent(s): 2c72578

fix(app): resolve ImportError by using LLMService class directly

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  from pathlib import Path
3
  from pipeline.process import process_texts
4
  from pipeline.visualize import generate_visualizations, generate_word_count_chart
5
- from pipeline.llm_service import get_interpretation
6
  import logging
7
  import pandas as pd
8
  from datetime import datetime
@@ -485,7 +485,8 @@ Each segment is represented as a vector of these TF-IDF scores, and the cosine s
485
 
486
  # Get interpretation from LLM (using OpenRouter API)
487
  progress(0.3, desc="Generating scholarly interpretation (this may take 20-40 seconds)...")
488
- interpretation = get_interpretation(df_results)
 
489
 
490
  # Simulate completion steps
491
  progress(0.9, desc="Formatting results...")
 
2
  from pathlib import Path
3
  from pipeline.process import process_texts
4
  from pipeline.visualize import generate_visualizations, generate_word_count_chart
5
+ from pipeline.llm_service import LLMService
6
  import logging
7
  import pandas as pd
8
  from datetime import datetime
 
485
 
486
  # Get interpretation from LLM (using OpenRouter API)
487
  progress(0.3, desc="Generating scholarly interpretation (this may take 20-40 seconds)...")
488
+ llm_service = LLMService()
489
+ interpretation = llm_service.analyze_similarity(df_results)
490
 
491
  # Simulate completion steps
492
  progress(0.9, desc="Formatting results...")