File size: 4,522 Bytes
1de0dc0 bebad14 1de0dc0 bebad14 dffaf30 bebad14 1de0dc0 bebad14 eba44c7 1de0dc0 be507b5 1de0dc0 be507b5 1de0dc0 bebad14 1de0dc0 bebad14 f624b87 bebad14 fd32c9f 1de0dc0 fd32c9f 1de0dc0 fd32c9f f354223 bebad14 28cb117 bebad14 44470f9 28cb117 1de0dc0 28cb117 1de0dc0 28cb117 1de0dc0 28cb117 4853a01 54bb0ac 1de0dc0 6242bac 54bb0ac 4853a01 1de0dc0 4853a01 54bb0ac 6242bac 54bb0ac 1de0dc0 54bb0ac 6242bac 54bb0ac 28cb117 bebad14 1de0dc0 dffaf30 bebad14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import random
import time
from pathlib import Path
import numpy as np
from biotite.structure.atoms import AtomArrayStack
from scipy.spatial.transform import Rotation as R
from pinder.core.structure.atoms import atom_array_from_pdb_file, normalize_orientation, write_pdb
from pinder.core.structure.contacts import get_stack_contacts
import gradio as gr
from gradio_molecule3d import Molecule3D
def predict(
receptor_pdb: Path,
ligand_pdb: Path,
receptor_fasta: Path | None = None,
ligand_fasta: Path | None = None,
) -> tuple[str, float]:
start_time = time.time()
# Do inference here
# return an output pdb file with the protein and two chains R and L.
receptor = atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
ligand = atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
receptor = normalize_orientation(receptor)
ligand = normalize_orientation(ligand)
# Number of random poses to generate
M = 50
# Inititalize an empty stack with shape (m x n x 3)
stack = AtomArrayStack(M, ligand.shape[0])
# copy annotations from ligand
for annot in ligand.get_annotation_categories():
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot)))
# Random translations sampled along 0-50 angstroms per axis
translation_magnitudes = np.linspace(
0, 26,
num=26,
endpoint=False
)
# generate one pose at a time
for i in range(M):
q = R.random()
translation_vec = [
random.choice(translation_magnitudes), # x
random.choice(translation_magnitudes), # y
random.choice(translation_magnitudes), # z
]
# transform the ligand chain
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec
# Find clashes (1.2 A contact radius)
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2)
# Keep the "best" pose based on pose w/fewest clashes
pose_clashes = []
for i in range(stack_conts.shape[0]):
pose_conts = stack_conts[i]
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0]))
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0]
best_pose = receptor + stack[best_pose_idx]
output_dir = Path(receptor_pdb).parent
# System ID
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
output_pdb = output_dir / pdb_name
write_pdb(best_pose, output_pdb)
end_time = time.time()
run_time = end_time - start_time
return str(output_pdb), run_time
with gr.Blocks() as app:
gr.Markdown("# Template for inference")
gr.Markdown("Title, description, and other information about the model")
with gr.Row():
with gr.Column():
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
input_fasta_1 = gr.File(label="Input Protein 1 monomer sequence (FASTA)")
with gr.Column():
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
input_fasta_2 = gr.File(label="Input Protein 2 monomer sequence (FASTA)")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"8i5w_R.pdb",
"8i5w_R.fasta",
"8i5w_L.pdb",
"8i5w_L.fasta",
],
],
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
)
reps = [
{
"model": 0,
"style": "cartoon",
"chain": "R",
"color": "whiteCarbon",
},
{
"model": 0,
"style": "cartoon",
"chain": "L",
"color": "greenCarbon",
},
{
"model": 0,
"chain": "R",
"style": "stick",
"sidechain": True,
"color": "whiteCarbon",
},
{
"model": 0,
"chain": "L",
"style": "stick",
"sidechain": True,
"color": "greenCarbon"
}
]
out = Molecule3D(reps=reps)
run_time = gr.Textbox(label="Runtime")
btn.click(predict, inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2], outputs=[out, run_time])
app.launch()
|