pinder_inference_template / inference_app.py
danielkovtun's picture
docs: chains should be R/L
eba44c7
raw
history blame
4.58 kB
import random
import time
from pathlib import Path
import numpy as np
from biotite.structure.atoms import AtomArrayStack
from scipy.spatial.transform import Rotation as R
from pinder.core.structure.atoms import atom_array_from_pdb_file, normalize_orientation, write_pdb
from pinder.core.structure.contacts import get_stack_contacts
import gradio as gr
from gradio_molecule3d import Molecule3D
def predict(
receptor_pdb: Path,
ligand_pdb: Path,
receptor_fasta: Path | None = None,
ligand_fasta: Path | None = None,
) -> tuple[str, float]:
start_time = time.time()
# Do inference here
# return an output pdb file with the protein and two chains R and L.
receptor = atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
ligand = atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
receptor = normalize_orientation(receptor)
ligand = normalize_orientation(ligand)
# Number of random poses to generate
M = 50
# Inititalize an empty stack with shape (m x n x 3)
stack = AtomArrayStack(M, ligand.shape[0])
# copy annotations from ligand
for annot in ligand.get_annotation_categories():
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot)))
# Random translations sampled along 0-50 angstroms per axis
translation_magnitudes = np.linspace(
0, M + 1,
num=M + 1,
endpoint=False
)
# generate one pose at a time
for i in range(M):
q = R.random()
translation_vec = [
random.choice(translation_magnitudes), # x
random.choice(translation_magnitudes), # y
random.choice(translation_magnitudes), # z
]
# transform the ligand chain
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec
# Find clashes (1.2 A contact radius)
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2)
# Keep the "best" pose based on pose w/fewest clashes
pose_clashes = []
for i in range(stack_conts.shape[0]):
pose_conts = stack_conts[i]
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0]))
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0]
best_pose = receptor + stack[best_pose_idx]
output_dir = Path(receptor_pdb).parent
# System ID
pdb_name = "--".join([
Path(receptor_pdb).stem.rstrip("-R"), Path(ligand_pdb).stem.rstrip("-L")
]) + ".pdb"
output_pdb = output_dir / pdb_name
write_pdb(best_pose, output_pdb)
end_time = time.time()
run_time = end_time - start_time
return str(output_pdb), run_time
with gr.Blocks() as app:
gr.Markdown("# Template for inference")
gr.Markdown("Title, description, and other information about the model")
with gr.Row():
with gr.Column():
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
input_fasta_1 = gr.File(label="Input Protein 1 monomer sequence (FASTA)")
with gr.Column():
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
input_fasta_2 = gr.File(label="Input Protein 2 monomer sequence (FASTA)")
# define any options here
# for automated inference the default options are used
# slider_option = gr.Slider(0,10, label="Slider Option")
# checkbox_option = gr.Checkbox(label="Checkbox Option")
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
btn = gr.Button("Run Inference")
gr.Examples(
[
[
"8i5w_R.pdb",
"8i5w_R.fasta",
"8i5w_L.pdb",
"8i5w_L.fasta",
],
],
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
)
reps = [
{
"model": 0,
"style": "cartoon",
"chain": "R",
"color": "whiteCarbon",
},
{
"model": 0,
"style": "cartoon",
"chain": "L",
"color": "greenCarbon",
},
{
"model": 0,
"chain": "R",
"style": "stick",
"sidechain": True,
"color": "whiteCarbon",
},
{
"model": 0,
"chain": "L",
"style": "stick",
"sidechain": True,
"color": "greenCarbon"
}
]
out = Molecule3D(reps=reps)
run_time = gr.Textbox(label="Runtime")
btn.click(predict, inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2], outputs=[out, run_time])
app.launch()