Commit
·
7d9b175
1
Parent(s):
722b2f2
feat: add example evaluate endpoint to fetch metrics for a single prediction given model and system ID
Browse files- inference_app.py +141 -70
inference_app.py
CHANGED
|
@@ -3,15 +3,20 @@ import time
|
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from biotite.structure.atoms import AtomArrayStack
|
| 7 |
from scipy.spatial.transform import Rotation as R
|
| 8 |
-
from pinder.core
|
|
|
|
| 9 |
from pinder.core.structure.contacts import get_stack_contacts
|
|
|
|
|
|
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
|
| 13 |
from gradio_molecule3d import Molecule3D
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
def predict(
|
| 17 |
receptor_pdb: Path,
|
|
@@ -22,10 +27,10 @@ def predict(
|
|
| 22 |
start_time = time.time()
|
| 23 |
# Do inference here
|
| 24 |
# return an output pdb file with the protein and two chains R and L.
|
| 25 |
-
receptor = atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
| 26 |
-
ligand = atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
| 27 |
-
receptor = normalize_orientation(receptor)
|
| 28 |
-
ligand = normalize_orientation(ligand)
|
| 29 |
|
| 30 |
# Number of random poses to generate
|
| 31 |
M = 50
|
|
@@ -69,79 +74,145 @@ def predict(
|
|
| 69 |
# System ID
|
| 70 |
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
|
| 71 |
output_pdb = output_dir / pdb_name
|
| 72 |
-
write_pdb(best_pose, output_pdb)
|
| 73 |
end_time = time.time()
|
| 74 |
run_time = end_time - start_time
|
| 75 |
return str(output_pdb), run_time
|
| 76 |
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
with gr.Blocks() as app:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
"
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
|
| 146 |
|
| 147 |
app.launch()
|
|
|
|
| 3 |
from pathlib import Path
|
| 4 |
|
| 5 |
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
from biotite.structure.atoms import AtomArrayStack
|
| 8 |
from scipy.spatial.transform import Rotation as R
|
| 9 |
+
from pinder.core import PinderSystem
|
| 10 |
+
from pinder.core.structure import atoms
|
| 11 |
from pinder.core.structure.contacts import get_stack_contacts
|
| 12 |
+
from pinder.core.loader.structure import Structure
|
| 13 |
+
from pinder.eval.dockq import BiotiteDockQ
|
| 14 |
|
| 15 |
import gradio as gr
|
| 16 |
|
| 17 |
from gradio_molecule3d import Molecule3D
|
| 18 |
|
| 19 |
+
EVAL_METRICS = ["system", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
|
| 20 |
|
| 21 |
def predict(
|
| 22 |
receptor_pdb: Path,
|
|
|
|
| 27 |
start_time = time.time()
|
| 28 |
# Do inference here
|
| 29 |
# return an output pdb file with the protein and two chains R and L.
|
| 30 |
+
receptor = atoms.atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
| 31 |
+
ligand = atoms.atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
| 32 |
+
receptor = atoms.normalize_orientation(receptor)
|
| 33 |
+
ligand = atoms.normalize_orientation(ligand)
|
| 34 |
|
| 35 |
# Number of random poses to generate
|
| 36 |
M = 50
|
|
|
|
| 74 |
# System ID
|
| 75 |
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
|
| 76 |
output_pdb = output_dir / pdb_name
|
| 77 |
+
atoms.write_pdb(best_pose, output_pdb)
|
| 78 |
end_time = time.time()
|
| 79 |
run_time = end_time - start_time
|
| 80 |
return str(output_pdb), run_time
|
| 81 |
|
| 82 |
|
| 83 |
+
def evaluate(
|
| 84 |
+
system_id: str,
|
| 85 |
+
prediction_pdb: Path,
|
| 86 |
+
) -> tuple[pd.DataFrame, float]:
|
| 87 |
+
start_time = time.time()
|
| 88 |
+
system = PinderSystem(system_id)
|
| 89 |
+
native = system.native.filepath
|
| 90 |
+
bdq = BiotiteDockQ(native, Path(prediction_pdb), parallel_io=False)
|
| 91 |
+
metrics = bdq.calculate()
|
| 92 |
+
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
|
| 93 |
+
metrics.rename(columns={"LRMS": "L_rms", "iRMS": "I_rms", "Fnat": "F_nat", "DockQ": "DOCKQ", "CAPRI": "CAPRI_class"}, inplace=True)
|
| 94 |
+
end_time = time.time()
|
| 95 |
+
run_time = end_time - start_time
|
| 96 |
+
pred = Structure(Path(prediction_pdb))
|
| 97 |
+
nat = Structure(Path(native))
|
| 98 |
+
pred, _, _ = pred.superimpose(nat)
|
| 99 |
+
pred.to_pdb(Path(prediction_pdb))
|
| 100 |
+
return metrics, [str(prediction_pdb), str(native)], run_time
|
| 101 |
+
|
| 102 |
+
|
| 103 |
with gr.Blocks() as app:
|
| 104 |
+
with gr.Tab("🧬 PINDER inference template"):
|
| 105 |
+
gr.Markdown("Title, description, and other information about the model")
|
| 106 |
+
with gr.Row():
|
| 107 |
+
with gr.Column():
|
| 108 |
+
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
|
| 109 |
+
input_fasta_1 = gr.File(label="Input Protein 1 monomer sequence (FASTA)")
|
| 110 |
+
with gr.Column():
|
| 111 |
+
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
|
| 112 |
+
input_fasta_2 = gr.File(label="Input Protein 2 monomer sequence (FASTA)")
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# define any options here
|
| 117 |
|
| 118 |
+
# for automated inference the default options are used
|
| 119 |
+
# slider_option = gr.Slider(0,10, label="Slider Option")
|
| 120 |
+
# checkbox_option = gr.Checkbox(label="Checkbox Option")
|
| 121 |
+
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
|
| 122 |
|
| 123 |
+
btn = gr.Button("Run Inference")
|
| 124 |
+
|
| 125 |
+
gr.Examples(
|
| 126 |
+
[
|
| 127 |
+
[
|
| 128 |
+
"8i5w_R.pdb",
|
| 129 |
+
"8i5w_R.fasta",
|
| 130 |
+
"8i5w_L.pdb",
|
| 131 |
+
"8i5w_L.fasta",
|
| 132 |
+
],
|
| 133 |
+
],
|
| 134 |
+
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
|
| 135 |
+
)
|
| 136 |
+
reps = [
|
| 137 |
+
{
|
| 138 |
+
"model": 0,
|
| 139 |
+
"style": "cartoon",
|
| 140 |
+
"chain": "R",
|
| 141 |
+
"color": "whiteCarbon",
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"model": 0,
|
| 145 |
+
"style": "cartoon",
|
| 146 |
+
"chain": "L",
|
| 147 |
+
"color": "greenCarbon",
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"model": 0,
|
| 151 |
+
"chain": "R",
|
| 152 |
+
"style": "stick",
|
| 153 |
+
"sidechain": True,
|
| 154 |
+
"color": "whiteCarbon",
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"model": 0,
|
| 158 |
+
"chain": "L",
|
| 159 |
+
"style": "stick",
|
| 160 |
+
"sidechain": True,
|
| 161 |
+
"color": "greenCarbon"
|
| 162 |
+
}
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
out = Molecule3D(reps=reps)
|
| 166 |
+
run_time = gr.Textbox(label="Runtime")
|
| 167 |
+
|
| 168 |
+
btn.click(predict, inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2], outputs=[out, run_time])
|
| 169 |
+
with gr.Tab("⚖️ PINDER evaluation template"):
|
| 170 |
+
with gr.Row():
|
| 171 |
+
with gr.Column():
|
| 172 |
+
input_system_id = gr.Textbox(label="PINDER system ID")
|
| 173 |
+
input_prediction_pdb = gr.File(label="Top ranked prediction (PDB with chains R and L)")
|
| 174 |
+
|
| 175 |
+
eval_btn = gr.Button("Run Evaluation")
|
| 176 |
+
gr.Examples(
|
| 177 |
+
[
|
| 178 |
+
[
|
| 179 |
+
"3g9w__A1_Q71LX4--3g9w__D1_P05556",
|
| 180 |
+
"3g9w_R--3g9w_L.pdb",
|
| 181 |
+
],
|
| 182 |
+
],
|
| 183 |
+
[input_system_id, input_prediction_pdb],
|
| 184 |
+
)
|
| 185 |
+
reps = [
|
| 186 |
+
{
|
| 187 |
+
"model": 0,
|
| 188 |
+
"style": "cartoon",
|
| 189 |
+
"chain": "R",
|
| 190 |
+
"color": "greenCarbon",
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"model": 0,
|
| 194 |
+
"style": "cartoon",
|
| 195 |
+
"chain": "L",
|
| 196 |
+
"color": "cyanCarbon",
|
| 197 |
+
},
|
| 198 |
+
{
|
| 199 |
+
"model": 1,
|
| 200 |
+
"style": "cartoon",
|
| 201 |
+
"chain": "R",
|
| 202 |
+
"color": "grayCarbon",
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"model": 1,
|
| 206 |
+
"style": "cartoon",
|
| 207 |
+
"chain": "L",
|
| 208 |
+
"color": "blueCarbon",
|
| 209 |
+
},
|
| 210 |
+
]
|
| 211 |
+
|
| 212 |
+
pred_native = Molecule3D(reps=reps, config={"backgroundColor": "black"})
|
| 213 |
+
eval_run_time = gr.Textbox(label="Evaluation runtime")
|
| 214 |
+
metric_table = gr.DataFrame(pd.DataFrame([], columns=EVAL_METRICS),label="Evaluation metrics")
|
| 215 |
|
| 216 |
+
eval_btn.click(evaluate, inputs=[input_system_id, input_prediction_pdb], outputs=[metric_table, pred_native, eval_run_time])
|
| 217 |
|
| 218 |
app.launch()
|