Commit
·
f17a933
1
Parent(s):
8aac36a
chore: lint
Browse files- inference_app.py +154 -134
inference_app.py
CHANGED
@@ -18,58 +18,55 @@ from gradio_molecule3d import Molecule3D
|
|
18 |
|
19 |
EVAL_METRICS = ["system", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
|
20 |
|
|
|
21 |
def predict(
|
22 |
-
receptor_pdb: Path,
|
23 |
-
ligand_pdb: Path,
|
24 |
-
receptor_fasta: Path | None = None,
|
25 |
ligand_fasta: Path | None = None,
|
26 |
) -> tuple[str, float]:
|
27 |
start_time = time.time()
|
28 |
# Do inference here
|
29 |
-
# return an output pdb file with the protein and two chains R and L.
|
30 |
receptor = atoms.atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
31 |
ligand = atoms.atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
32 |
receptor = atoms.normalize_orientation(receptor)
|
33 |
ligand = atoms.normalize_orientation(ligand)
|
34 |
-
|
35 |
# Number of random poses to generate
|
36 |
M = 50
|
37 |
-
# Inititalize an empty stack with shape (m x n x 3)
|
38 |
stack = AtomArrayStack(M, ligand.shape[0])
|
39 |
-
|
40 |
# copy annotations from ligand
|
41 |
for annot in ligand.get_annotation_categories():
|
42 |
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot)))
|
43 |
-
|
44 |
# Random translations sampled along 0-50 angstroms per axis
|
45 |
-
translation_magnitudes = np.linspace(
|
46 |
-
0, 26,
|
47 |
-
num=26,
|
48 |
-
endpoint=False
|
49 |
-
)
|
50 |
# generate one pose at a time
|
51 |
for i in range(M):
|
52 |
q = R.random()
|
53 |
translation_vec = [
|
54 |
-
random.choice(translation_magnitudes),
|
55 |
-
random.choice(translation_magnitudes),
|
56 |
-
random.choice(translation_magnitudes),
|
57 |
]
|
58 |
# transform the ligand chain
|
59 |
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec
|
60 |
-
|
61 |
# Find clashes (1.2 A contact radius)
|
62 |
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2)
|
63 |
-
|
64 |
# Keep the "best" pose based on pose w/fewest clashes
|
65 |
pose_clashes = []
|
66 |
for i in range(stack_conts.shape[0]):
|
67 |
pose_conts = stack_conts[i]
|
68 |
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0]))
|
69 |
-
|
70 |
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0]
|
71 |
best_pose = receptor + stack[best_pose_idx]
|
72 |
-
|
73 |
output_dir = Path(receptor_pdb).parent
|
74 |
# System ID
|
75 |
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
|
@@ -81,8 +78,8 @@ def predict(
|
|
81 |
|
82 |
|
83 |
def evaluate(
|
84 |
-
system_id: str,
|
85 |
-
prediction_pdb: Path,
|
86 |
) -> tuple[pd.DataFrame, float]:
|
87 |
start_time = time.time()
|
88 |
system = PinderSystem(system_id)
|
@@ -90,7 +87,16 @@ def evaluate(
|
|
90 |
bdq = BiotiteDockQ(native, Path(prediction_pdb), parallel_io=False)
|
91 |
metrics = bdq.calculate()
|
92 |
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
|
93 |
-
metrics.rename(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
end_time = time.time()
|
95 |
run_time = end_time - start_time
|
96 |
pred = Structure(Path(prediction_pdb))
|
@@ -102,117 +108,131 @@ def evaluate(
|
|
102 |
|
103 |
with gr.Blocks() as app:
|
104 |
with gr.Tab("🧬 PINDER inference template"):
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
with gr.Tab("⚖️ PINDER evaluation template"):
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
app.launch()
|
|
|
18 |
|
19 |
EVAL_METRICS = ["system", "L_rms", "I_rms", "F_nat", "DOCKQ", "CAPRI_class"]
|
20 |
|
21 |
+
|
22 |
def predict(
|
23 |
+
receptor_pdb: Path,
|
24 |
+
ligand_pdb: Path,
|
25 |
+
receptor_fasta: Path | None = None,
|
26 |
ligand_fasta: Path | None = None,
|
27 |
) -> tuple[str, float]:
|
28 |
start_time = time.time()
|
29 |
# Do inference here
|
30 |
+
# return an output pdb file with the protein and two chains R and L.
|
31 |
receptor = atoms.atom_array_from_pdb_file(receptor_pdb, extra_fields=["b_factor"])
|
32 |
ligand = atoms.atom_array_from_pdb_file(ligand_pdb, extra_fields=["b_factor"])
|
33 |
receptor = atoms.normalize_orientation(receptor)
|
34 |
ligand = atoms.normalize_orientation(ligand)
|
35 |
+
|
36 |
# Number of random poses to generate
|
37 |
M = 50
|
38 |
+
# Inititalize an empty stack with shape (m x n x 3)
|
39 |
stack = AtomArrayStack(M, ligand.shape[0])
|
40 |
+
|
41 |
# copy annotations from ligand
|
42 |
for annot in ligand.get_annotation_categories():
|
43 |
stack.set_annotation(annot, np.copy(ligand.get_annotation(annot)))
|
44 |
+
|
45 |
# Random translations sampled along 0-50 angstroms per axis
|
46 |
+
translation_magnitudes = np.linspace(0, 26, num=26, endpoint=False)
|
|
|
|
|
|
|
|
|
47 |
# generate one pose at a time
|
48 |
for i in range(M):
|
49 |
q = R.random()
|
50 |
translation_vec = [
|
51 |
+
random.choice(translation_magnitudes), # x
|
52 |
+
random.choice(translation_magnitudes), # y
|
53 |
+
random.choice(translation_magnitudes), # z
|
54 |
]
|
55 |
# transform the ligand chain
|
56 |
stack.coord[i, ...] = q.apply(ligand.coord) + translation_vec
|
57 |
+
|
58 |
# Find clashes (1.2 A contact radius)
|
59 |
stack_conts = get_stack_contacts(receptor, stack, threshold=1.2)
|
60 |
+
|
61 |
# Keep the "best" pose based on pose w/fewest clashes
|
62 |
pose_clashes = []
|
63 |
for i in range(stack_conts.shape[0]):
|
64 |
pose_conts = stack_conts[i]
|
65 |
pose_clashes.append((i, np.argwhere(pose_conts != -1).shape[0]))
|
66 |
+
|
67 |
best_pose_idx = sorted(pose_clashes, key=lambda x: x[1])[0][0]
|
68 |
best_pose = receptor + stack[best_pose_idx]
|
69 |
+
|
70 |
output_dir = Path(receptor_pdb).parent
|
71 |
# System ID
|
72 |
pdb_name = Path(receptor_pdb).stem + "--" + Path(ligand_pdb).name
|
|
|
78 |
|
79 |
|
80 |
def evaluate(
|
81 |
+
system_id: str,
|
82 |
+
prediction_pdb: Path,
|
83 |
) -> tuple[pd.DataFrame, float]:
|
84 |
start_time = time.time()
|
85 |
system = PinderSystem(system_id)
|
|
|
87 |
bdq = BiotiteDockQ(native, Path(prediction_pdb), parallel_io=False)
|
88 |
metrics = bdq.calculate()
|
89 |
metrics = metrics[["system", "LRMS", "iRMS", "Fnat", "DockQ", "CAPRI"]].copy()
|
90 |
+
metrics.rename(
|
91 |
+
columns={
|
92 |
+
"LRMS": "L_rms",
|
93 |
+
"iRMS": "I_rms",
|
94 |
+
"Fnat": "F_nat",
|
95 |
+
"DockQ": "DOCKQ",
|
96 |
+
"CAPRI": "CAPRI_class",
|
97 |
+
},
|
98 |
+
inplace=True,
|
99 |
+
)
|
100 |
end_time = time.time()
|
101 |
run_time = end_time - start_time
|
102 |
pred = Structure(Path(prediction_pdb))
|
|
|
108 |
|
109 |
with gr.Blocks() as app:
|
110 |
with gr.Tab("🧬 PINDER inference template"):
|
111 |
+
gr.Markdown("Title, description, and other information about the model")
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
input_protein_1 = gr.File(label="Input Protein 1 monomer (PDB)")
|
115 |
+
input_fasta_1 = gr.File(
|
116 |
+
label="Input Protein 1 monomer sequence (FASTA)"
|
117 |
+
)
|
118 |
+
with gr.Column():
|
119 |
+
input_protein_2 = gr.File(label="Input Protein 2 monomer (PDB)")
|
120 |
+
input_fasta_2 = gr.File(
|
121 |
+
label="Input Protein 2 monomer sequence (FASTA)"
|
122 |
+
)
|
123 |
+
|
124 |
+
# define any options here
|
125 |
+
|
126 |
+
# for automated inference the default options are used
|
127 |
+
# slider_option = gr.Slider(0,10, label="Slider Option")
|
128 |
+
# checkbox_option = gr.Checkbox(label="Checkbox Option")
|
129 |
+
# dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option")
|
130 |
+
|
131 |
+
btn = gr.Button("Run Inference")
|
132 |
+
|
133 |
+
gr.Examples(
|
134 |
+
[
|
135 |
+
[
|
136 |
+
"8i5w_R.pdb",
|
137 |
+
"8i5w_R.fasta",
|
138 |
+
"8i5w_L.pdb",
|
139 |
+
"8i5w_L.fasta",
|
140 |
+
],
|
141 |
+
],
|
142 |
+
[input_protein_1, input_fasta_1, input_protein_2, input_fasta_2],
|
143 |
+
)
|
144 |
+
reps = [
|
145 |
+
{
|
146 |
+
"model": 0,
|
147 |
+
"style": "cartoon",
|
148 |
+
"chain": "R",
|
149 |
+
"color": "whiteCarbon",
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"model": 0,
|
153 |
+
"style": "cartoon",
|
154 |
+
"chain": "L",
|
155 |
+
"color": "greenCarbon",
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"model": 0,
|
159 |
+
"chain": "R",
|
160 |
+
"style": "stick",
|
161 |
+
"sidechain": True,
|
162 |
+
"color": "whiteCarbon",
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"model": 0,
|
166 |
+
"chain": "L",
|
167 |
+
"style": "stick",
|
168 |
+
"sidechain": True,
|
169 |
+
"color": "greenCarbon",
|
170 |
+
},
|
171 |
+
]
|
172 |
+
|
173 |
+
out = Molecule3D(reps=reps)
|
174 |
+
run_time = gr.Textbox(label="Runtime")
|
175 |
+
|
176 |
+
btn.click(
|
177 |
+
predict,
|
178 |
+
inputs=[input_protein_1, input_protein_2, input_fasta_1, input_fasta_2],
|
179 |
+
outputs=[out, run_time],
|
180 |
+
)
|
181 |
with gr.Tab("⚖️ PINDER evaluation template"):
|
182 |
+
with gr.Row():
|
183 |
+
with gr.Column():
|
184 |
+
input_system_id = gr.Textbox(label="PINDER system ID")
|
185 |
+
input_prediction_pdb = gr.File(
|
186 |
+
label="Top ranked prediction (PDB with chains R and L)"
|
187 |
+
)
|
188 |
+
|
189 |
+
eval_btn = gr.Button("Run Evaluation")
|
190 |
+
gr.Examples(
|
191 |
+
[
|
192 |
+
[
|
193 |
+
"3g9w__A1_Q71LX4--3g9w__D1_P05556",
|
194 |
+
"3g9w_R--3g9w_L.pdb",
|
195 |
+
],
|
196 |
+
],
|
197 |
+
[input_system_id, input_prediction_pdb],
|
198 |
+
)
|
199 |
+
reps = [
|
200 |
+
{
|
201 |
+
"model": 0,
|
202 |
+
"style": "cartoon",
|
203 |
+
"chain": "R",
|
204 |
+
"color": "greenCarbon",
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"model": 0,
|
208 |
+
"style": "cartoon",
|
209 |
+
"chain": "L",
|
210 |
+
"color": "cyanCarbon",
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"model": 1,
|
214 |
+
"style": "cartoon",
|
215 |
+
"chain": "R",
|
216 |
+
"color": "grayCarbon",
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"model": 1,
|
220 |
+
"style": "cartoon",
|
221 |
+
"chain": "L",
|
222 |
+
"color": "blueCarbon",
|
223 |
+
},
|
224 |
+
]
|
225 |
+
|
226 |
+
pred_native = Molecule3D(reps=reps, config={"backgroundColor": "black"})
|
227 |
+
eval_run_time = gr.Textbox(label="Evaluation runtime")
|
228 |
+
metric_table = gr.DataFrame(
|
229 |
+
pd.DataFrame([], columns=EVAL_METRICS), label="Evaluation metrics"
|
230 |
+
)
|
231 |
+
|
232 |
+
eval_btn.click(
|
233 |
+
evaluate,
|
234 |
+
inputs=[input_system_id, input_prediction_pdb],
|
235 |
+
outputs=[metric_table, pred_native, eval_run_time],
|
236 |
+
)
|
237 |
|
238 |
app.launch()
|