Spaces:
Running
Running
File size: 40,469 Bytes
6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6537369 6af75b9 4f8e612 a0ce4fe 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 0724716 4f8e612 a0ce4fe 4f8e612 d396b0d fff6ecb d396b0d 3971804 fff6ecb d396b0d 3971804 d396b0d 3971804 4f8e612 d396b0d 4f8e612 f7ff14c 38b16ca d762f15 121d7ab 6537369 38b16ca 4f8e612 a0ce4fe 4f8e612 6537369 4f8e612 a0ce4fe 4f8e612 121d7ab 4f8e612 0c1c11f 4f8e612 7e02bbf 4f8e612 38b16ca 6537369 4f8e612 c9d7bb3 143de8c c9d7bb3 4f8e612 a0ce4fe 4f8e612 6537369 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 6af75b9 4f8e612 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
import streamlit as st
import streamlit.components.v1 as components
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import time
import os
import torch.nn as nn
import torch
# --- Page Configuration ---
st.set_page_config(layout="wide")
# --- Streamlit Session State Initialization ---
if 'run_button_clicked' not in st.session_state:
st.session_state.run_button_clicked = False
if 'loading' not in st.session_state:
st.session_state.loading = False
if 'data' not in st.session_state:
st.session_state.data = None
if 'predictions' not in st.session_state:
st.session_state.predictions = None
if 'error' not in st.session_state:
st.session_state.error = None
if 'last_ticker' not in st.session_state:
st.session_state['last_ticker'] = 'AMZN'
# --- Custom CSS ---
st.markdown("""
<style>
/* Hide Streamlit's default header, footer, and hamburger menu */
#MainMenu, header, footer { visibility: hidden; }
/* Remove padding from the main block container for a full-width feel */
.block-container {
padding: 0 !important;
}
div.stButton > button {
background: rgba(255, 255, 255, 0.2);
color: orange !important; /* White text */
font-family: "Times New Roman " !important; /* Font */
font-size: 18px !important; /* Font size */
font-weight: bold !important; /* Bold text */
padding: 10px 20px; /* Padding for buttons */
border: none; /* Remove border */
border-radius: 35px; /* Rounded corners */
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
transition: all 0.3s ease-in-out; /* Smooth transition */
display: flex;
align-items: center;
justify-content: center;
margin: 10px 0;
width:190px;
height:50px;
margin-top:5px;
}
div[data-testid="stSelectbox"]
{
background-color: white !important;
position: relative;
border-bottom:1px solid #ccc;
border-radius:0px;
}
div[data-testid="stTextInput"]{
}
div[data-testid="stTextInput"] > div >div {
background-color: rgba(255, 158, 87, 0.12) !important;
}
div[data-testid="stTextInputRootElement"]{
border: 1px solid white !important;
}
/* Hover effect */
div.stButton > button:hover {
background: rgba(255, 255, 255, 0.2);
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
transform: scale(1.05); /* Slightly enlarge button */
transform: scale(1.1); /* Slight zoom on hover */
box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
}
/* Styling the sidebar to have a modern, dark look */
section[data-testid="stSidebar"] {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.15);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.01);
height:100px;
[data-testid="stSidebar"] h2 {
color: #FFFFFF; /* White headers in the sidebar */
font-family:time new roman !important;
}
[data-testid="stSidebar"] .st-emotion-cache-1629p8f a {
color: #94A3B8; /* Lighter text color for links */
font-family:time new roman !important;
}
[data-testid="stImageContainer"]>img{
max-width:70% !important;
margin-top:-70px;
}
div[data-testid="stMarkdownContainer"] >p{
font-family:time new roman !important;
}
</style>
""", unsafe_allow_html=True)
# --- Python Backend Functions ---
# Outside of any function
class GRUModel(nn.Module):
def __init__(self, input_dim=1, hidden_dim=100, num_layers=2, output_dim=1, dropout_prob=0.2):
super(GRUModel, self).__init__()
self.gru = nn.GRU(input_dim, hidden_dim, num_layers, batch_first=True, dropout=dropout_prob)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(2, x.size(0), 100).to(x.device)
out, _ = self.gru(x, h0)
return self.fc(out[:, -1, :])
class BiLSTMModel(nn.Module):
def __init__(self):
super(BiLSTMModel, self).__init__()
self.lstm = nn.LSTM(input_size=1, hidden_size=100, num_layers=1, batch_first=True, dropout=0.2, bidirectional=True)
self.fc = nn.Linear(200, 1)
def forward(self, x):
h0 = torch.zeros(2, x.size(0), 100)
c0 = torch.zeros(2, x.size(0), 100)
out, _ = self.lstm(x, (h0, c0))
return self.fc(out[:, -1, :])
@st.cache_resource(ttl=3600)
def load_model_from_disk(path, model_type):
model = BiLSTMModel() if model_type == "Bi-Directional LSTM" else GRUModel()
state = torch.load(path, map_location=torch.device("cpu"))
model.load_state_dict(state['model_state_dict'] if 'model_state_dict' in state else state)
model.eval()
return model
@st.cache_resource(ttl=3600)
def load_scripted_model(path):
model = torch.jit.load(path, map_location=torch.device("cpu"))
model.eval()
return model
@st.cache_resource
def preload_models():
return {
"Bi-Directional LSTM": load_scripted_model("bilstm_scriptes.pt"),
"Gated Recurrent Unit": load_model_from_disk("best_gru_model.pth", model_type="GRU")
}
MODELS = preload_models()
@st.cache_data(ttl=900) # Cache data for 15 minutes
def get_stock_data(ticker):
"""Fetches historical stock data from Yahoo Finance for the last 4 years."""
end_date = datetime.now()
start_date = end_date - timedelta(days=4 * 365)
print(f"Fetching data for ticker: {ticker} from {start_date.date()} to {end_date.date()}")
data = yf.download(ticker, period="4y", multi_level_index=False)
data.to_csv("AMZN_data.csv")
if data.empty:
print(f"No data found for ticker: {ticker}")
return None
data.reset_index(inplace=True)
print(f"Successfully fetched {len(data)} rows for {ticker}")
return data
def predict_with_model(data, n_days, model_path, model_type, model=None)-> pd.DataFrame:
if model is None:
model = load_model_from_disk(model_path, model_type=model_type)
close_prices = data['Close'].values.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_prices = scaler.fit_transform(close_prices)
sequence_length = 90
if len(scaled_prices) < sequence_length:
raise ValueError(f"Not enough historical data ({len(scaled_prices)} points) to create a sequence of {sequence_length} for prediction.")
last_sequence = scaled_prices[-sequence_length:]
current_seq = torch.tensor(last_sequence.reshape(1, sequence_length, 1), dtype=torch.float32)
predictions_scaled = []
with torch.no_grad():
for _ in range(n_days):
pred = model(current_seq)
predictions_scaled.append(pred.item())
next_input = pred.view(1, 1, 1)
current_seq = torch.cat((current_seq[:, 1:, :], next_input), dim=1)
predictions = scaler.inverse_transform(np.array(predictions_scaled).reshape(-1, 1)).flatten()
print("predictions",predictions)
last_date = pd.to_datetime(data['Date'].iloc[-1])
future_dates = [last_date + timedelta(days=i) for i in range(1, n_days + 1)]
prediction_df = pd.DataFrame({'Date': future_dates, 'Predicted Price': predictions})
historical_returns = data['Close'].pct_change().dropna()
volatility = historical_returns.std() if not historical_returns.empty else 0.01
error_std_growth = volatility * np.sqrt(np.arange(1, n_days + 1))
prediction_df['Upper CI'] = predictions * (1 + 1.96 * error_std_growth)
prediction_df['Lower CI'] = predictions * (1 - 1.96 * error_std_growth)
return prediction_df
# --- Streamlit Sidebar Controls ---
with st.sidebar:
st.image("logo2.png", use_container_width=True)
st.markdown("Dashboard Controls")
ticker = st.text_input("Stock Ticker", st.session_state.get('last_ticker', "AMZN"), disabled=True).upper()
model_type = st.selectbox(
"Prediction Model",
("Bi-Directional LSTM", "Gated Recurrent Unit"),
key="model_choice",
help="Select the neural network architecture for prediction."
)
prediction_days = st.slider("Prediction Horizon (Days)", 7, 21, st.session_state.get('last_prediction_days', 7))
if st.button("21 days ahead of the market", use_container_width=True, disabled=True):
st.session_state.run_button_clicked = True
st.session_state.loading = True
st.session_state.last_ticker = ticker
st.session_state.last_prediction_days = prediction_days
st.session_state.error = None
print("Generate Dashboard button clicked. Loading state set to True.")
st.rerun()
# Check if model or prediction days have changed
if (
ticker != st.session_state.get('last_ticker', '') or
model_type != st.session_state.get('last_model_type', '') or
prediction_days != st.session_state.get('last_prediction_days', 7)
):
st.session_state.run_button_clicked = True
st.session_state.loading = True
st.session_state.last_ticker = ticker
st.session_state.last_model_type = model_type
st.session_state.last_prediction_days = prediction_days
# --- Main Application Logic ---
if st.session_state.run_button_clicked:
model = MODELS[model_type]
print(f"Inside main logic block. Current loading state: {st.session_state.loading}")
try:
if os.path.exists("AMZN_data.csv"):
st.session_state.data = pd.read_csv("AMZN_data.csv")
else:
st.session_state.data = get_stock_data(ticker)
if st.session_state.data is None:
st.session_state.error = f"Could not fetch data for ticker '{ticker}'. It may be an invalid symbol or network issue."
else:
model_path = "best_bilstm_model.pth" if model_type == "Bi-Directional LSTM" else "best_gru_model.pth"
st.session_state.predictions = predict_with_model(
st.session_state.data, prediction_days, model_path=None, model_type=model_type, model=model
)
print("model",model)
print("data", st.session_state.data)
st.session_state.error = None
except FileNotFoundError as e:
st.session_state.error = str(e)
print(f"Caught FileNotFoundError: {e}")
except ValueError as e:
st.session_state.error = str(e)
print(f"Caught ValueError: {e}")
except Exception as e:
st.session_state.error = f"An unexpected error occurred: {str(e)}"
print(f"Caught general Exception: {e}")
st.session_state.loading = False
st.session_state.run_button_clicked = False
print(f"Processing complete. Loading state set to False. Error: {st.session_state.error}")
st.rerun()
# --- Data Preparation for Front-End ---
historical_data_json = 'null'
prediction_data_json = 'null'
is_loading_js = str(st.session_state.get('loading', False)).lower()
error_message_js = 'null'
if st.session_state.get('error'):
error_message_js = f"'{st.session_state.error}'" # Pass error to JS
if st.session_state.data is not None and st.session_state.get('error') is None:
historical_data_json = st.session_state.data.to_json(orient='split', date_format='iso')
prediction_data_json = st.session_state.predictions.to_json(orient='split', date_format='iso')
# --- HTML Front-End ---
html_code = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Stock Intelligence Dashboard</title>
<script src="https://cdn.tailwindcss.com"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/chart.umd.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/chartjs-adapter-date-fns.bundle.min.js"></script>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap" rel="stylesheet">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css">
<style>
body {{ font-family: 'time new roman'; background-color: #f1f5f9;scrollbar-width: 2px !important; scrollbar-color: rgba(100, 100, 100, 0.4) transparent;}}
.metric-card, .info-card {{ background-color: #ffffff; border-radius: 1rem; box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1); transition: all 0.3s ease-in-out; border: 1px solid #e2e8f0; }}
.metric-card:hover {{ transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgb(0 0 0 / 0.1), 0 4px 6px -4px rgb(0 0 0 / 0.1); }}
.positive {{ color: #10B981; }}
.negative {{ color: #EF4444; }}
.neutral {{ color: #64748b; }}
::-webkit-scrollbar {{
width: 6px;
}}
::-webkit-scrollbar-thumb {{
background-color: rgba(100, 100, 100, 0.4);
border-radius: 3px;
}}
::-webkit-scrollbar-track {{
background: transparent;
}}
#predictionTable table {{ width: 100%; border-collapse: collapse; }}
#predictionTable th, #predictionTable td {{ padding: 0.75rem 1rem; text-align: left; border-bottom: 1px solid #e2e8f0; }}
#predictionTable th {{ background-color: #f8fafc; font-weight: 600; font-size: 0.75rem; text-transform: uppercase; letter-spacing: 0.05em; color: #64748b; }}
#loading-overlay {{ position: fixed; inset: 0; background-color: rgba(255, 255, 255, 0.8); z-index: 100; display: flex; align-items: center; justify-content: center; backdrop-filter: blur(4px); transition: opacity 0.3s ease; }}
.spinner {{ width: 56px; height: 56px; border: 5px solid #3b82f6; border-bottom-color: transparent; border-radius: 50%; display: inline-block; box-sizing: border-box; animation: spin 1s linear infinite; }}
@keyframes spin {{ 0% {{ transform: rotate(0deg); }} 100% {{ transform: rotate(360deg); }} }}
.hidden {{ display: none !important; }}
.error-message {{ color: #EF4444; font-weight: 600; text-align: center; margin-top: 20px; padding: 15px; background-color: #fee2e2; border-radius: 0.5rem; border: 1px solid #ef4444; }}
</style>
</head>
<body class="antialiased text-slate-800">
<main id="content-wrapper">
<header class="bg-white/80 backdrop-blur-lg sticky top-0 z-50 border-b border-slate-200">
<div class="max-w-8xl mx-auto px-4 sm:px-6 lg:px-8">
<div class="flex items-center justify-between h-16">
<div class="flex items-center">
<i class="fas fa-chart-line text-2xl text-orange-400"></i>
<h1 id="dashboard-title" class="text-xl font-bold text-slate-900 ml-3">{ticker} Intelligence Dashboard</h1>
</div>
<div class="text-sm text-slate-500 flex items-center">
<div id="status-message" class="text-center text-sm text-slate-500 mt-4 hidden">Loading updated data...</div>
<i class="fas fa-rocket mr-2 text-orange-400"></i> Powered by a <span class="font-semibold text-yellow-600 ml-1">{model_type}</span>  model
</div>
</div>
</div>
</header>
<div class="p-4 sm:p-6 lg:p-8">
<div class="max-w-8xl mx-auto">
<div id="dashboard-error-message" class="hidden error-message"></div>
<div class="grid grid-cols-1 sm:grid-cols-2 lg:grid-cols-4 gap-6 mb-8" id="metrics-grid"></div>
<div class="grid grid-cols-1 lg:grid-cols-3 gap-8">
<div class="lg:col-span-2 space-y-8">
<div class="info-card p-4 sm:p-6">
<canvas id="priceChart" style="height: 350px;"></canvas>
</div>
<div class="info-card p-4 sm:p-6">
<canvas id="volumeChart" style="height: 200px;"></canvas>
</div>
<div id="predictionDetailsContainer" class="info-card p-4 sm:p-6 hidden">
<h3 class="text-lg font-semibold mb-4 text-slate-800">AI Prediction Details</h3>
<div class="overflow-x-auto" id="predictionTable"></div>
</div>
</div>
<div class="lg:col-span-1 space-y-8">
<div class="info-card p-6">
<h3 class="text-lg font-semibold mb-4 text-slate-800 flex items-center"><i class="fas fa-robot mr-3 text-orange-400"></i> AI Prediction Summary</h3>
<div id="predictionResult" class="mt-4 text-center"></div>
</div>
<div class="info-card p-6">
<h3 class="text-lg font-semibold mb-4 text-slate-800">Technical Summary</h3>
<div class="space-y-3" id="tech-summary"></div>
</div>
</div>
</div>
</div>
</div>
</main>
<script>
document.addEventListener('DOMContentLoaded', function () {{
const {{
LineController,
LineElement,
PointElement,
LinearScale,
TimeScale,
Legend,
Tooltip,
BarController,
BarElement,
CategoryScale // Although you use TimeScale for X, CategoryScale might be needed for other internal reasons or for completeness for Bar charts
}} = Chart;
Chart.register(
LineController,
LineElement,
PointElement,
LinearScale,
TimeScale,
Legend,
Tooltip,
BarController,
BarElement,
CategoryScale
);
console.log("JS: Chart.js components registered.");
const historicalDataJson = {historical_data_json};
const predictionDataJson = {prediction_data_json};
const isLoading = {is_loading_js};
const errorMessage = {error_message_js}; // Now receiving Python error
console.log("JS: DOMContentLoaded. Initial isLoading:", isLoading, "Error:", errorMessage);
const loadingOverlay = document.getElementById('loading-overlay');
const contentWrapper = document.getElementById('content-wrapper');
const metricsGridEl = document.getElementById('metrics-grid');
const techSummaryEl = document.getElementById('tech-summary');
const predictionResultEl = document.getElementById('predictionResult');
const predictionDetailsContainerEl = document.getElementById('predictionDetailsContainer');
const predictionTableEl = document.getElementById('predictionTable');
const dashboardErrorMessageEl = document.getElementById('dashboard-error-message');
let priceChart;
let volumeChart;
function parseData(jsonData) {{
try {{
if (!jsonData || !jsonData.columns) return null;
return {{
dates: jsonData.data.map(row => new Date(row[jsonData.columns.indexOf('Date')])),
prices: jsonData.data.map(row => row[jsonData.columns.indexOf('Close')]),
volumes: jsonData.data.map(row => row[jsonData.columns.indexOf('Volume')]),
highs: jsonData.data.map(row => row[jsonData.columns.indexOf('High')]),
}};
}} catch (e) {{
console.error("JS: Error parsing historical data:", e);
return null;
}}
}}
function parsePredictions(jsonData) {{
try {{
if (!jsonData || !jsonData.columns) return [];
return jsonData.data.map(row => ({{
x: new Date(row[jsonData.columns.indexOf('Date')]),
y: row[jsonData.columns.indexOf('Predicted Price')],
upperCI: row[jsonData.columns.indexOf('Upper CI')],
lowerCI: row[jsonData.columns.indexOf('Lower CI')]
}}));
}} catch (e) {{
console.error("JS: Error parsing prediction data:", e);
return [];
}}
}}
function displayMetric(elementId, value, prefix = '', suffix = '', decimals = 0) {{
const el = document.getElementById(elementId);
if (el) {{
el.textContent = prefix + value.toLocaleString(undefined, {{ minimumFractionDigits: decimals, maximumFractionDigits: decimals }}) + suffix;
}}
}}
function updateMetrics(data) {{
if (!data || data.prices.length < 2) {{
metricsGridEl.innerHTML = `<div class="col-span-full text-center text-slate-500 p-4">Not enough historical data to display metrics.</div>`;
return;
}}
const currentPrice = data.prices[data.prices.length - 1];
const prevPrice = data.prices[data.prices.length - 2];
const change = currentPrice - prevPrice;
const changePct = (change / prevPrice) * 100;
const volume = data.volumes[data.volumes.length - 1];
const sharesOutstanding = 10.33 * 1e9; // Example value
const marketCap = currentPrice * sharesOutstanding;
const metrics = [
{{ id: 'price', title: 'Current Price', value: currentPrice, change: `${{change >= 0 ? '+' : ''}}${{change.toFixed(2)}} (${{changePct.toFixed(2)}}%)`, status: change >= 0 ? 'positive' : 'negative', icon: 'fa-dollar-sign', prefix: '$', decimals: 2 }},
{{ id: 'market-cap', title: 'Market Cap', value: marketCap, change: 'USD', status: 'neutral', icon: 'fa-building', prefix: '$', suffix: '', decimals: 2, isCurrency: true }},
{{ id: 'volume', title: 'Daily Volume', value: volume, change: 'Shares Traded', status: 'neutral', icon: 'fa-chart-bar', suffix: '', decimals: 0 }},
{{ id: '52-week-high', title: '52-Week High', value: Math.max(...data.highs.slice(-252)), change: 'Annual Peak', status: 'neutral', icon: 'fa-arrow-trend-up', prefix: '$', decimals: 2 }},
];
metricsGridEl.innerHTML = metrics.map(metric => `<div class="metric-card p-5"><div class="flex items-center justify-between"><p class="text-sm font-medium text-slate-500">${{metric.title}}</p><div class="text-2xl text-slate-300"><i class="fas ${{metric.icon}}"></i></div></div><p class="text-3xl font-bold text-slate-900 mt-2" id="${{metric.id}}">0</p><p class="text-xs ${{metric.status}} mt-1 font-semibold">${{metric.change}}</p></div>`).join('');
metrics.forEach(metric => {{
let displayValue = metric.value;
let displaySuffix = metric.suffix;
let displayDecimals = metric.decimals;
if (metric.isCurrency) {{
if (metric.value >= 1e12) {{
displayValue = metric.value / 1e12;
displaySuffix = 'T';
displayDecimals = 2;
}} else if (metric.value >= 1e9) {{
displayValue = metric.value / 1e9;
displaySuffix = 'B';
displayDecimals = 2;
}} else if (metric.value >= 1e6) {{
displayValue = metric.value / 1e6;
displaySuffix = 'M';
displayDecimals = 2;
}}
}}
if (metric.id === 'volume') {{
if (metric.value >= 1e9) {{
displayValue = metric.value / 1e9;
displaySuffix = 'B';
displayDecimals = 2;
}} else if (metric.value >= 1e6) {{
displayValue = metric.value / 1e6;
displaySuffix = 'M';
displayDecimals = 2;
}} else if (metric.value >= 1e3) {{
displayValue = metric.value / 1e3;
displaySuffix = 'K';
displayDecimals = 2;
}}
}}
displayMetric(metric.id, displayValue, metric.prefix || '', displaySuffix, displayDecimals);
}});
}}
function updateTechSummary(data) {{
if (!data || data.prices.length < 50) {{ // Need enough data for 50-day SMA
techSummaryEl.innerHTML = '<p class="text-sm text-slate-500">Not enough data for full technical analysis (min 50 days required).</p>';
return;
}}
const prices = data.prices;
const lastPrice = prices[prices.length - 1];
// Ensure slice has enough elements
const sma20 = prices.slice(-20).length >= 20 ? prices.slice(-20).reduce((a, b) => a + b, 0) / 20 : NaN;
const sma50 = prices.slice(-50).length >= 50 ? prices.slice(-50).reduce((a, b) => a + b, 0) / 50 : NaN;
let gains = [];
let losses = [];
for (let i = 1; i < prices.length; i++) {{
let diff = prices[i] - prices[i-1];
if (diff > 0) {{
gains.push(diff);
losses.push(0);
}} else {{
gains.push(0);
losses.push(Math.abs(diff));
}}
}}
let avgGain = 0;
let avgLoss = 0;
if (gains.length >= 14) {{
avgGain = gains.slice(-14).reduce((a, b) => a + b, 0) / 14;
avgLoss = losses.slice(-14).reduce((a, b) => a + b, 0) / 14;
}} else if (gains.length > 0) {{
avgGain = gains.reduce((a, b) => a + b, 0) / gains.length;
avgLoss = losses.reduce((a, b) => a + b, 0) / losses.length;
}}
let rs = (avgLoss === 0 || isNaN(avgLoss)) ? (avgGain > 0 ? Infinity : 0) : avgGain / avgLoss;
let rsi = 100 - (100 / (1 + rs));
if (isNaN(rsi)) rsi = 0;
let rsiClass = 'neutral';
if (rsi > 70) rsiClass = 'negative';
else if (rsi < 30) rsiClass = 'positive';
const summary = [
{{ label: 'SMA (20 Day)', value: isNaN(sma20) ? 'N/A' : `$${{sma20.toFixed(2)}}`, status: lastPrice > sma20 ? 'positive' : (isNaN(sma20) ? 'neutral' : 'negative') }},
{{ label: 'SMA (50 Day)', value: isNaN(sma50) ? 'N/A' : `$${{sma50.toFixed(2)}}`, status: lastPrice > sma50 ? 'positive' : (isNaN(sma50) ? 'neutral' : 'negative') }},
{{ label: 'RSI (14 Day)', value: rsi.toFixed(1), status: rsiClass }}
];
techSummaryEl.innerHTML = summary.map(item => `<div class="flex justify-between items-center text-sm"><span class="text-slate-600">${{item.label}}</span><span class="font-semibold ${{item.status}}">${{item.value}}</span></div>`).join('');
}}
function renderCharts(data, predictions) {{
// Render Price Chart
const priceCtx = document.getElementById('priceChart').getContext('2d');
if (priceChart) priceChart.destroy();
const priceDatasets = [
{{
label: 'Historical Price',
data: data.dates.map((d, i) => ({{x: d, y: data.prices[i]}})),
borderColor: '#3b82f6',
backgroundColor: 'rgba(59, 130, 246, 0.1)',
borderWidth: 2,
pointRadius: 0,
fill: true,
tension: 0.3
}}
];
if (predictions.length > 0) {{
priceDatasets.push({{
label: 'AI Prediction',
data: predictions,
borderColor: '#10b981',
borderWidth: 2,
pointRadius: 2,
borderDash: [5, 5],
fill: false,
tension: 0.3
}});
// Add confidence interval
const confidenceData = [
...predictions.map(p => ({{x: p.x, y: p.lowerCI}})),
...predictions.map(p => ({{x: p.x, y: p.upperCI}})).reverse()
];
priceDatasets.push({{
label: '95% Confidence',
data: confidenceData,
fill: '1',
backgroundColor: 'rgba(234, 179, 8, 0.2)',
borderColor: 'transparent',
pointRadius: 0
}});
}}
priceChart = new Chart(priceCtx, {{
type: 'line', // Explicitly define type
data: {{ datasets: priceDatasets }},
options: {{
responsive: true,
maintainAspectRatio: false,
scales: {{
x: {{
type: 'time',
time: {{
unit: 'month',
tooltipFormat: 'MMM d, yyyy'
}},
grid: {{ display: false }}
}},
y: {{
title: {{ display: true, text: 'Price (USD)' }},
grid: {{ color: '#f1f5f9' }}
}}
}},
plugins: {{
legend: {{
display: true,
position: 'top',
align: 'end'
}},
tooltip: {{
mode: 'index',
intersect: false,
callbacks: {{
title: function(context) {{
return context[0].label;
}},
label: function(context) {{
let label = context.dataset.label || '';
if (label) label += ': ';
label += '$' + context.parsed.y.toFixed(2);
if (context.dataset.label === 'AI Prediction' && predictions.length > 0) {{
const predictionPoint = predictions.find(p => p.x.getTime() === context.parsed.x);
if (predictionPoint) {{
label += ` (CI: $${{predictionPoint.lowerCI.toFixed(2)}} - $${{predictionPoint.upperCI.toFixed(2)}})`;
}}
}}
return label;
}}
}}
}}
}}
}}
}});
// Render Volume Chart
const volumeCtx = document.getElementById('volumeChart').getContext('2d');
if (volumeChart) volumeChart.destroy();
volumeChart = new Chart(volumeCtx, {{
type: 'bar', // Explicitly define type
data: {{
datasets: [{{
label: 'Volume',
data: data.dates.map((d, i) => ({{x: d, y: data.volumes[i]}})),
backgroundColor: '#e2e8f0',
borderColor: '#cbd5e1',
borderWidth: 1
}}]
}},
options: {{
responsive: true,
maintainAspectRatio: false,
scales: {{
x: {{
type: 'time',
time: {{
unit: 'month'
}},
grid: {{ display: false }}
}},
y: {{
title: {{ display: true, text: 'Volume' }},
grid: {{ color: '#f1f5f9' }},
ticks: {{
callback: function(value) {{
if (value >= 1e9) return (value / 1e9).toFixed(0) + 'B';
if (value >= 1e6) return (value / 1e6).toFixed(0) + 'M';
if (value >= 1e3) return (value / 1e3).toFixed(0) + 'K';
return value;
}}
}}
}}
}},
plugins: {{
legend: {{
display: false
}},
tooltip: {{
callbacks: {{
label: function(context) {{
let label = context.dataset.label || '';
if (label) label += ': ';
let value = context.parsed.y;
if (value >= 1e9) label += (value / 1e9).toLocaleString(undefined, {{maximumFractionDigits: 1}}) + 'B';
else if (value >= 1e6) label += (value / 1e6).toLocaleString(undefined, {{maximumFractionDigits: 1}}) + 'M';
else if (value >= 1e3) label += (value / 1e3).toLocaleString(undefined, {{maximumFractionDigits: 1}}) + 'K';
else label += value.toLocaleString();
return label;
}}
}}
}}
}}
}}
}});
}}
function displayPredictions(data, predictions) {{
if (!data || predictions.length === 0) {{
predictionDetailsContainerEl.classList.add('hidden');
predictionResultEl.innerHTML = '<p class="text-sm text-slate-500">No predictions available or not enough data for prediction.</p>';
return;
}}
predictionDetailsContainerEl.classList.remove('hidden');
const lastHistoricalPrice = data.prices[data.prices.length - 1];
const finalPredictedPrice = predictions[predictions.length - 1].y;
const changeOverall = finalPredictedPrice - lastHistoricalPrice;
const changePctOverall = (changeOverall / lastHistoricalPrice) * 100;
const statusClass = changeOverall >= 0 ? 'positive' : 'negative';
predictionResultEl.innerHTML = `<p class="text-sm text-slate-500">Predicted price in ${{predictions.length}} days:</p><p class="text-3xl font-bold mt-1 ${{statusClass}}">$${{finalPredictedPrice.toFixed(2)}} <span class="text-base font-normal">(${{changeOverall >= 0 ? '+' : ''}}${{changeOverall.toFixed(2)}} / ${{changePctOverall.toFixed(2)}}%)</span></p>`;
const tableRows = predictions.map(p => `
<tr>
<td>${{new Date(p.x).toLocaleDateString()}}</td>
<td class="font-semibold">$${{p.y.toFixed(2)}}</td>
<td>$${{p.lowerCI.toFixed(2)}} - $${{p.upperCI.toFixed(2)}}</td>
</tr>
`).join('');
predictionTableEl.innerHTML = `
<table>
<thead>
<tr>
<th>Date</th>
<th>Predicted Price</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>${{tableRows}}</tbody>
</table>
`;
}}
function loadDashboard() {{
console.log("JS: loadDashboard() called. Current isLoading:", isLoading, "Error:", errorMessage);
const statusMessageEl = document.getElementById('status-message');
// Handle loading overlay visibility
if (isLoading === 'true') {{
statusMessageEl.classList.remove('hidden');
dashboardErrorMessageEl.classList.add('hidden'); // Hide any previous error
return; // Stop execution, let Streamlit re-run and call again when done
}} else {{
console.log("JS: in() called. Current isLoading:", isLoading, "Error:", errorMessage);
statusMessageEl.classList.add('hidden');
}}
// Handle errors
if (errorMessage && errorMessage !== 'null') {{
dashboardErrorMessageEl.textContent = "Error: " + errorMessage;
dashboardErrorMessageEl.classList.remove('hidden');
// Clear existing charts if any, and other content
if (priceChart) priceChart.destroy();
if (volumeChart) volumeChart.destroy();
metricsGridEl.innerHTML = `<div class="col-span-full text-center text-slate-500 p-8 info-card">An error occurred. Please check the ticker or model.</div>`;
predictionDetailsContainerEl.classList.add('hidden');
predictionResultEl.innerHTML = '<p class="text-sm text-slate-500">No results due to error.</p>';
techSummaryEl.innerHTML = '<p class="text-sm text-slate-500">No technical summary due to error.</p>';
return;
}} else {{
dashboardErrorMessageEl.classList.add('hidden'); // Ensure error message is hidden if no error
}}
// If no error and not loading, proceed to render dashboard
const historicalData = parseData(historicalDataJson);
const predictionData = parsePredictions(predictionDataJson);
if (!historicalData) {{
metricsGridEl.innerHTML = `<div class="col-span-full text-center text-slate-500 p-8 info-card">Click "Generate Dashboard" in the sidebar to load data.</div>`;
predictionDetailsContainerEl.classList.add('hidden');
predictionResultEl.innerHTML = '<p class="text-sm text-slate-500">No data loaded yet.</p>';
techSummaryEl.innerHTML = '<p class="text-sm text-slate-500">No data for technical summary.</p>';
if (priceChart) priceChart.destroy();
if (volumeChart) volumeChart.destroy();
console.log("JS: No historical data available to render dashboard.");
return;
}}
updateMetrics(historicalData);
updateTechSummary(historicalData);
renderCharts(historicalData, predictionData); // Renamed to plural as it handles both
displayPredictions(historicalData, predictionData);
console.log("JS: Dashboard loaded successfully.");
}}
loadDashboard(); // Initial call when DOM is ready
}});
</script>
</body>
</html>
"""
# --- Embed HTML Component in Streamlit ---
# No need for st.error here, as the JS will handle displaying the error in the HTML component
components.html(html_code, height=1200, scrolling=True) |