Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ from gradcam import GradCAM # Import your GradCAM class
|
|
27 |
|
28 |
if "model" not in st.session_state:
|
29 |
st.session_state.model = tf.keras.models.load_model(
|
30 |
-
"
|
31 |
)
|
32 |
if "framework" not in st.session_state:
|
33 |
st.session_state.framework = "Tensorflow"
|
@@ -226,7 +226,7 @@ class_labels = ["Cyst", "Normal", "Stone", "Tumor"]
|
|
226 |
|
227 |
|
228 |
def load_tensorflow_model():
|
229 |
-
tf_model = tf.keras.models.load_model("
|
230 |
return tf_model
|
231 |
|
232 |
if st.session_state.framework =="TensorFlow":
|
@@ -239,7 +239,7 @@ if st.session_state.framework =="TensorFlow":
|
|
239 |
return predictions
|
240 |
|
241 |
if st.session_state.framework == "PyTorch":
|
242 |
-
logo_path = "
|
243 |
bg_color = "#FF5733" # For example, a warm red/orange
|
244 |
bg_color_iv = "orange" # For example, a warm red/orange
|
245 |
|
@@ -311,7 +311,7 @@ def get_layers_data(model, prefix=""):
|
|
311 |
|
312 |
###########################################
|
313 |
main_bg_ext = "png"
|
314 |
-
main_bg = "
|
315 |
# Read and encode the logo image
|
316 |
|
317 |
with open(logo_path, "rb") as image_file:
|
@@ -859,7 +859,7 @@ if page == "Home":
|
|
859 |
|
860 |
# components.html(html_string) # JavaScript works
|
861 |
# st.markdown(html_string, unsafe_allow_html=True)
|
862 |
-
image_path = "
|
863 |
|
864 |
st.container()
|
865 |
st.markdown(
|
@@ -955,7 +955,7 @@ if page == "Home":
|
|
955 |
placeholder.empty()
|
956 |
st.markdown(content, unsafe_allow_html=True)
|
957 |
else:
|
958 |
-
default_image_path = "
|
959 |
with open(image_path, "rb") as image_file:
|
960 |
encoded_image = base64.b64encode(image_file.read()).decode()
|
961 |
|
@@ -974,7 +974,7 @@ if page == "Home":
|
|
974 |
unsafe_allow_html=True,
|
975 |
)
|
976 |
if page == "pome":
|
977 |
-
gif_path = "
|
978 |
with open(gif_path, "rb") as image_file:
|
979 |
encode_image = base64.b64encode(image_file.read()).decode()
|
980 |
st.markdown(
|
@@ -1015,12 +1015,12 @@ if page == "pome":
|
|
1015 |
|
1016 |
if toggle and st.session_state.framework != "PyTorch":
|
1017 |
st.session_state.framework = "PyTorch"
|
1018 |
-
st.session_state.model = torch.load('
|
1019 |
st.rerun()
|
1020 |
elif not toggle and st.session_state.framework != "TensorFlow":
|
1021 |
st.session_state.framework = "TensorFlow"
|
1022 |
st.session_state.model = tf.keras.models.load_model(
|
1023 |
-
"
|
1024 |
)
|
1025 |
st.rerun()
|
1026 |
print(st.session_state.framework)
|
|
|
27 |
|
28 |
if "model" not in st.session_state:
|
29 |
st.session_state.model = tf.keras.models.load_model(
|
30 |
+
"best_model.h5"
|
31 |
)
|
32 |
if "framework" not in st.session_state:
|
33 |
st.session_state.framework = "Tensorflow"
|
|
|
226 |
|
227 |
|
228 |
def load_tensorflow_model():
|
229 |
+
tf_model = tf.keras.models.load_model("best_model.h5")
|
230 |
return tf_model
|
231 |
|
232 |
if st.session_state.framework =="TensorFlow":
|
|
|
239 |
return predictions
|
240 |
|
241 |
if st.session_state.framework == "PyTorch":
|
242 |
+
logo_path = "pytorch.png"
|
243 |
bg_color = "#FF5733" # For example, a warm red/orange
|
244 |
bg_color_iv = "orange" # For example, a warm red/orange
|
245 |
|
|
|
311 |
|
312 |
###########################################
|
313 |
main_bg_ext = "png"
|
314 |
+
main_bg = "bg1.jpg"
|
315 |
# Read and encode the logo image
|
316 |
|
317 |
with open(logo_path, "rb") as image_file:
|
|
|
859 |
|
860 |
# components.html(html_string) # JavaScript works
|
861 |
# st.markdown(html_string, unsafe_allow_html=True)
|
862 |
+
image_path = "image.jpg"
|
863 |
|
864 |
st.container()
|
865 |
st.markdown(
|
|
|
955 |
placeholder.empty()
|
956 |
st.markdown(content, unsafe_allow_html=True)
|
957 |
else:
|
958 |
+
default_image_path = "image.jpg"
|
959 |
with open(image_path, "rb") as image_file:
|
960 |
encoded_image = base64.b64encode(image_file.read()).decode()
|
961 |
|
|
|
974 |
unsafe_allow_html=True,
|
975 |
)
|
976 |
if page == "pome":
|
977 |
+
gif_path = "bg3.gif"
|
978 |
with open(gif_path, "rb") as image_file:
|
979 |
encode_image = base64.b64encode(image_file.read()).decode()
|
980 |
st.markdown(
|
|
|
1015 |
|
1016 |
if toggle and st.session_state.framework != "PyTorch":
|
1017 |
st.session_state.framework = "PyTorch"
|
1018 |
+
st.session_state.model = torch.load('kidney_model .pth', map_location=torch.device('cpu'))
|
1019 |
st.rerun()
|
1020 |
elif not toggle and st.session_state.framework != "TensorFlow":
|
1021 |
st.session_state.framework = "TensorFlow"
|
1022 |
st.session_state.model = tf.keras.models.load_model(
|
1023 |
+
"best_model.h5"
|
1024 |
)
|
1025 |
st.rerun()
|
1026 |
print(st.session_state.framework)
|