Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
st.set_page_config(layout="wide")
|
| 5 |
+
import streamlit.components.v1 as components
|
| 6 |
+
import time
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import matplotlib.cm as cm
|
| 12 |
+
from PIL import Image
|
| 13 |
+
from tf_keras_vis.gradcam import Gradcam
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
from sklearn.metrics import classification_report,confusion_matrix, roc_curve, auc,precision_recall_curve, average_precision_score
|
| 16 |
+
from sklearn.preprocessing import label_binarize
|
| 17 |
+
import seaborn as sns
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
import torchvision.models as models
|
| 21 |
+
from torchvision import datasets, transforms
|
| 22 |
+
import torchvision.transforms as transforms
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
from gradcam import GradCAM # Import your GradCAM class
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if "model" not in st.session_state:
|
| 29 |
+
st.session_state.model = tf.keras.models.load_model(
|
| 30 |
+
"models/best_model.h5"
|
| 31 |
+
)
|
| 32 |
+
if "framework" not in st.session_state:
|
| 33 |
+
st.session_state.framework = "Tensorflow"
|
| 34 |
+
if "menu" not in st.session_state:
|
| 35 |
+
st.session_state.menu = "1"
|
| 36 |
+
if st.session_state.menu =="1":
|
| 37 |
+
st.session_state.show_summary = True
|
| 38 |
+
st.session_state.show_arch = False
|
| 39 |
+
st.session_state.show_desc = False
|
| 40 |
+
elif st.session_state.menu =="2":
|
| 41 |
+
st.session_state.show_arch = True
|
| 42 |
+
st.session_state.show_summary = False
|
| 43 |
+
st.session_state.show_desc = False
|
| 44 |
+
elif st.session_state.menu =="3":
|
| 45 |
+
st.session_state.show_arch = False
|
| 46 |
+
st.session_state.show_summary = False
|
| 47 |
+
st.session_state.show_desc = True
|
| 48 |
+
else:
|
| 49 |
+
st.session_state.show_desc = True
|
| 50 |
+
|
| 51 |
+
import base64
|
| 52 |
+
import os
|
| 53 |
+
import tf_keras_vis
|
| 54 |
+
|
| 55 |
+
# ****************************************/
|
| 56 |
+
# GRAD CAM
|
| 57 |
+
# *********************************************#
|
| 58 |
+
if st.session_state.framework == "TensorFlow":
|
| 59 |
+
gradcam = Gradcam(st.session_state.model, model_modifier=None, clone=False)
|
| 60 |
+
|
| 61 |
+
def generate_gradcam(pil_image, target_class):
|
| 62 |
+
# Convert PIL to array and preprocess
|
| 63 |
+
img_array = np.array(pil_image)
|
| 64 |
+
img_preprocessed = tf.keras.applications.vgg16.preprocess_input(img_array.copy())
|
| 65 |
+
img_tensor = tf.expand_dims(img_preprocessed, axis=0)
|
| 66 |
+
|
| 67 |
+
# Generate heatmap
|
| 68 |
+
loss = lambda output: tf.reduce_mean(output[:, target_class])
|
| 69 |
+
cam = gradcam(loss, img_tensor, penultimate_layer=-1)
|
| 70 |
+
|
| 71 |
+
# Process heatmap
|
| 72 |
+
cam = cam
|
| 73 |
+
if cam.ndim > 2:
|
| 74 |
+
cam = cam.squeeze()
|
| 75 |
+
cam = np.maximum(cam, 0)
|
| 76 |
+
cam = cv2.resize(cam, (224, 224))
|
| 77 |
+
cam = cam / cam.max() if cam.max() > 0 else cam
|
| 78 |
+
return cam
|
| 79 |
+
|
| 80 |
+
if st.session_state.framework == "PyTorch":
|
| 81 |
+
target_layer = st.session_state.model.conv3 # Typically last convolutional layer
|
| 82 |
+
#gradcam = GradCAM(st.session_state.model, target_layer)
|
| 83 |
+
def preprocess_image(image):
|
| 84 |
+
preprocess = transforms.Compose([
|
| 85 |
+
transforms.Resize((224, 224)),
|
| 86 |
+
transforms.ToTensor()
|
| 87 |
+
])
|
| 88 |
+
return preprocess(image).unsqueeze(0) # Add batch dimension
|
| 89 |
+
|
| 90 |
+
def generate_gradcams(image, target_class):
|
| 91 |
+
# Preprocess the image and convert it to a tensor
|
| 92 |
+
input_image = preprocess_image(image)
|
| 93 |
+
|
| 94 |
+
# Instantiate GradCAM
|
| 95 |
+
gradcampy = GradCAM(st.session_state.model, target_layer)
|
| 96 |
+
|
| 97 |
+
# Generate the CAM
|
| 98 |
+
cam = gradcampy.generate(input_image, target_class)
|
| 99 |
+
|
| 100 |
+
return cam
|
| 101 |
+
def convert_image_to_base64(pil_image):
|
| 102 |
+
buffered = BytesIO()
|
| 103 |
+
pil_image.save(buffered, format="PNG")
|
| 104 |
+
return base64.b64encode(buffered.getvalue()).decode()
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
#-------------------------------------------------
|
| 108 |
+
#loading pytorch
|
| 109 |
+
class KidneyCNN(nn.Module):
|
| 110 |
+
def __init__(self, num_classes=4):
|
| 111 |
+
super(KidneyCNN, self).__init__()
|
| 112 |
+
|
| 113 |
+
# Convolutional layers
|
| 114 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
|
| 115 |
+
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
|
| 116 |
+
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
|
| 117 |
+
self.conv4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1)
|
| 118 |
+
|
| 119 |
+
# Batch normalization layers
|
| 120 |
+
self.bn1 = nn.BatchNorm2d(32)
|
| 121 |
+
self.bn2 = nn.BatchNorm2d(64)
|
| 122 |
+
self.bn3 = nn.BatchNorm2d(128)
|
| 123 |
+
self.bn4 = nn.BatchNorm2d(256)
|
| 124 |
+
|
| 125 |
+
# Max pooling layers
|
| 126 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
| 127 |
+
|
| 128 |
+
# Fully connected layers
|
| 129 |
+
self.fc1 = nn.Linear(256 * 14 * 14, 512)
|
| 130 |
+
self.fc2 = nn.Linear(512, num_classes)
|
| 131 |
+
|
| 132 |
+
# Dropout for regularization
|
| 133 |
+
self.dropout = nn.Dropout(0.5)
|
| 134 |
+
|
| 135 |
+
def forward(self, x):
|
| 136 |
+
# Conv block 1
|
| 137 |
+
x = self.pool(F.relu(self.bn1(self.conv1(x))))
|
| 138 |
+
|
| 139 |
+
# Conv block 2
|
| 140 |
+
x = self.pool(F.relu(self.bn2(self.conv2(x))))
|
| 141 |
+
|
| 142 |
+
# Conv block 3
|
| 143 |
+
x = self.pool(F.relu(self.bn3(self.conv3(x))))
|
| 144 |
+
# Conv block 4
|
| 145 |
+
x = self.pool(F.relu(self.bn4(self.conv4(x))))
|
| 146 |
+
|
| 147 |
+
x = x.view(x.size(0), -1)
|
| 148 |
+
|
| 149 |
+
# Fully connected layers
|
| 150 |
+
x = self.dropout(F.relu(self.fc1(x)))
|
| 151 |
+
x = self.fc2(x)
|
| 152 |
+
|
| 153 |
+
return x
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
if st.session_state.framework =="PyTorch":
|
| 160 |
+
st.session_state.model = torch.load('models/kidney_model .pth', map_location=torch.device('cpu'))
|
| 161 |
+
st.session_state.model.eval()
|
| 162 |
+
print(type(st.session_state.model))
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
#*********************************************
|
| 166 |
+
|
| 167 |
+
# /#*********************************************/
|
| 168 |
+
# LOADING TEST DATASET
|
| 169 |
+
|
| 170 |
+
# *************************************************
|
| 171 |
+
if st.session_state.framework == "TensorFlow":
|
| 172 |
+
test_dir = "test"
|
| 173 |
+
BATCH_SIZE = 32
|
| 174 |
+
IMG_SIZE = (224, 224)
|
| 175 |
+
test_dataset = tf.keras.utils.image_dataset_from_directory(
|
| 176 |
+
test_dir, shuffle=False, batch_size=BATCH_SIZE, image_size=IMG_SIZE
|
| 177 |
+
)
|
| 178 |
+
class_names = test_dataset.class_names
|
| 179 |
+
def one_hot_encode(image, label):
|
| 180 |
+
label = tf.one_hot(label, num_classes)
|
| 181 |
+
return image, label
|
| 182 |
+
# One-hot encode labels using CategoryEncoding
|
| 183 |
+
class_labels = class_names
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# One-hot encode labels using CategoryEncoding
|
| 188 |
+
|
| 189 |
+
# One-hot encode labels using CategoryEncoding
|
| 190 |
+
num_classes = len(class_names)
|
| 191 |
+
|
| 192 |
+
test_dataset = test_dataset.map(one_hot_encode)
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
elif st.session_state.framework == "PyTorch":
|
| 196 |
+
test_dir = "test"
|
| 197 |
+
BATCH_SIZE = 32
|
| 198 |
+
IMG_SIZE = (224, 224)
|
| 199 |
+
transform = transforms.Compose([
|
| 200 |
+
transforms.Resize((224, 224)),
|
| 201 |
+
transforms.ToTensor(),
|
| 202 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 203 |
+
])
|
| 204 |
+
|
| 205 |
+
test_dataset = datasets.ImageFolder(root='test', transform=transform)
|
| 206 |
+
class_names = test_dataset.classes
|
| 207 |
+
|
| 208 |
+
# One-hot encode labels using CategoryEncoding
|
| 209 |
+
class_labels = class_names
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# One-hot encode labels using CategoryEncoding
|
| 214 |
+
|
| 215 |
+
# One-hot encode labels using CategoryEncoding
|
| 216 |
+
num_classes = len(class_names)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
#######################################################
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
# --------------------------------------------------#
|
| 225 |
+
class_labels = ["Cyst", "Normal", "Stone", "Tumor"]
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def load_tensorflow_model():
|
| 229 |
+
tf_model = tf.keras.models.load_model("models/best_model.h5")
|
| 230 |
+
return tf_model
|
| 231 |
+
|
| 232 |
+
if st.session_state.framework =="TensorFlow":
|
| 233 |
+
|
| 234 |
+
def predict_image(image):
|
| 235 |
+
time.sleep(2)
|
| 236 |
+
image = image.resize((224, 224))
|
| 237 |
+
image = np.expand_dims(image, axis=0)
|
| 238 |
+
predictions = st.session_state.model.predict(image)
|
| 239 |
+
return predictions
|
| 240 |
+
|
| 241 |
+
if st.session_state.framework == "PyTorch":
|
| 242 |
+
logo_path = "images/pytorch.png"
|
| 243 |
+
bg_color = "#FF5733" # For example, a warm red/orange
|
| 244 |
+
bg_color_iv = "orange" # For example, a warm red/orange
|
| 245 |
+
|
| 246 |
+
model = "TENSORFLOW"
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def predict_image(image):
|
| 250 |
+
# Preprocess the image to match the model input requirements
|
| 251 |
+
transform = transforms.Compose([
|
| 252 |
+
transforms.Resize((224, 224)),
|
| 253 |
+
transforms.ToTensor(),
|
| 254 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Standard VGG16 normalization
|
| 255 |
+
])
|
| 256 |
+
|
| 257 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
| 258 |
+
|
| 259 |
+
# Move image to the same device as the model (GPU or CPU)
|
| 260 |
+
image = image
|
| 261 |
+
|
| 262 |
+
# Set the model to evaluation mode
|
| 263 |
+
st.session_state.model.eval()
|
| 264 |
+
|
| 265 |
+
with torch.no_grad(): # Disable gradient calculation
|
| 266 |
+
outputs = st.session_state.model(image) # Forward pass
|
| 267 |
+
|
| 268 |
+
# Get predicted probabilities (softmax for multi-class)
|
| 269 |
+
if outputs.shape[1] == 1:
|
| 270 |
+
probs = torch.sigmoid(outputs) # Apply sigmoid activation for binary classification
|
| 271 |
+
prob_class_1 = probs[0].item() # Probability for class 1
|
| 272 |
+
prob_class_0 = 1 - prob_class_1 # Probability for class 0
|
| 273 |
+
|
| 274 |
+
# If the output has two units (binary classification with softmax)
|
| 275 |
+
else:
|
| 276 |
+
probs = torch.nn.functional.softmax(outputs, dim=1)
|
| 277 |
+
prob_class_0 = probs[0, 0].item()
|
| 278 |
+
prob_class_1 = probs[0, 1].item()
|
| 279 |
+
# Get the predicted class
|
| 280 |
+
print("Raw model output (logits):", outputs)
|
| 281 |
+
|
| 282 |
+
return prob_class_0, prob_class_1, probs
|
| 283 |
+
else:
|
| 284 |
+
logo_path = "images/tensorflow.png"
|
| 285 |
+
bg_color = "orange" # For example, a warm red/orange
|
| 286 |
+
bg_color_iv = "#FF5733" # For example, a warm red/orange
|
| 287 |
+
|
| 288 |
+
model = "PYTORCH"
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
#/*******************loading pytorch summary
|
| 292 |
+
def get_layers_data(model, prefix=""):
|
| 293 |
+
layers_data = []
|
| 294 |
+
for name, layer in model.named_children(): # Iterate over layers
|
| 295 |
+
full_name = f"{prefix}.{name}" if prefix else name # Track hierarchy
|
| 296 |
+
|
| 297 |
+
try:
|
| 298 |
+
shape = str(list(layer.parameters())[0].shape) # Get shape of the first param
|
| 299 |
+
except Exception:
|
| 300 |
+
shape = "N/A"
|
| 301 |
+
|
| 302 |
+
param_count = sum(p.numel() for p in layer.parameters()) # Count parameters
|
| 303 |
+
|
| 304 |
+
layers_data.append((full_name, layer.__class__.__name__, shape, f"{param_count:,}"))
|
| 305 |
+
|
| 306 |
+
# Recursively get layers inside this layer (for nested structures)
|
| 307 |
+
layers_data.extend(get_layers_data(layer, full_name))
|
| 308 |
+
|
| 309 |
+
return layers_data
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
###########################################
|
| 313 |
+
main_bg_ext = "png"
|
| 314 |
+
main_bg = "images/bg1.jpg"
|
| 315 |
+
# Read and encode the logo image
|
| 316 |
+
|
| 317 |
+
with open(logo_path, "rb") as image_file:
|
| 318 |
+
encoded_logo = base64.b64encode(image_file.read()).decode()
|
| 319 |
+
|
| 320 |
+
# Custom CSS to style the logo above the sidebar
|
| 321 |
+
st.markdown(
|
| 322 |
+
f"""
|
| 323 |
+
<style>
|
| 324 |
+
/* Container for logo and text */
|
| 325 |
+
.logo-text-container {{
|
| 326 |
+
position: fixed;
|
| 327 |
+
top: 20px; /* Adjust vertical position */
|
| 328 |
+
left: 30px; /* Align with sidebar */
|
| 329 |
+
display: flex;
|
| 330 |
+
align-items: center;
|
| 331 |
+
gap: 5px;
|
| 332 |
+
width: 70%;
|
| 333 |
+
z-index:1000;
|
| 334 |
+
}}
|
| 335 |
+
|
| 336 |
+
/* Logo styling */
|
| 337 |
+
.logo-text-container img {{
|
| 338 |
+
width: 50px; /* Adjust logo size */
|
| 339 |
+
border-radius: 10px; /* Optional: round edges */
|
| 340 |
+
margin-top:-10px;
|
| 341 |
+
margin-left:-5px;
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
}}
|
| 345 |
+
|
| 346 |
+
/* Bold text styling */
|
| 347 |
+
.logo-text-container h1 {{
|
| 348 |
+
font-family: Nunito;
|
| 349 |
+
color: #0175C2;
|
| 350 |
+
font-size: 28px;
|
| 351 |
+
font-weight: bold;
|
| 352 |
+
margin-right :100px;
|
| 353 |
+
padding:0px;
|
| 354 |
+
}}
|
| 355 |
+
.logo-text-container i{{
|
| 356 |
+
font-family: Nunito;
|
| 357 |
+
color: {bg_color};
|
| 358 |
+
font-size: 15px;
|
| 359 |
+
margin-right :10px;
|
| 360 |
+
padding:0px;
|
| 361 |
+
margin-left:-18.5%;
|
| 362 |
+
margin-top:1%;
|
| 363 |
+
}}
|
| 364 |
+
/* Sidebar styling */
|
| 365 |
+
section[data-testid="stSidebar"][aria-expanded="true"] {{
|
| 366 |
+
margin-top: 100px !important; /* Space for the logo */
|
| 367 |
+
border-radius: 0 60px 0px 60px !important; /* Top-left and bottom-right corners */
|
| 368 |
+
width: 200px !important; /* Sidebar width */
|
| 369 |
+
background:none; /* Gradient background */
|
| 370 |
+
/* box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
| 371 |
+
/* border: 1px solid #FFD700; /* Shiny golden border */
|
| 372 |
+
margin-bottom: 1px !important;
|
| 373 |
+
color:white !important;
|
| 374 |
+
|
| 375 |
+
}}
|
| 376 |
+
[class*="st-key-header"]{{
|
| 377 |
+
|
| 378 |
+
}}
|
| 379 |
+
header[data-testid="stHeader"] {{
|
| 380 |
+
/*background: transparent !important;*/
|
| 381 |
+
background: rgba(255, 255, 255, 0.05);
|
| 382 |
+
backdrop-filter: blur(10px);
|
| 383 |
+
/*margin-right: 10px !important;*/
|
| 384 |
+
margin-top: 0.5px !important;
|
| 385 |
+
z-index: 1 !important;
|
| 386 |
+
|
| 387 |
+
color: orange; /* White text */
|
| 388 |
+
font-family: "Times New Roman " !important; /* Font */
|
| 389 |
+
font-size: 18px !important; /* Font size */
|
| 390 |
+
font-weight: bold !important; /* Bold text */
|
| 391 |
+
padding: 10px 20px; /* Padding for buttons */
|
| 392 |
+
border: none; /* Remove border */
|
| 393 |
+
border-radius: 1px; /* Rounded corners */
|
| 394 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
| 395 |
+
transition: all 0.3s ease-in-out; /* Smooth transition */
|
| 396 |
+
align-items: left;
|
| 397 |
+
justify-content: center;
|
| 398 |
+
/*margin: 10px 0;*/
|
| 399 |
+
width:100%;
|
| 400 |
+
height:80px;
|
| 401 |
+
backdrop-filter: blur(10px);
|
| 402 |
+
border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
}}
|
| 406 |
+
div[data-testid="stDecoration"]{{
|
| 407 |
+
background-image:none;
|
| 408 |
+
}}
|
| 409 |
+
div[data-testid="stApp"]{{
|
| 410 |
+
/*background: grey;*/
|
| 411 |
+
background: rgba(255, 255, 255, 0.5); /* Semi-transparent white background */
|
| 412 |
+
|
| 413 |
+
height: 100vh; /* Full viewport height */
|
| 414 |
+
width: 99.5%;
|
| 415 |
+
border-radius: 2px !important;
|
| 416 |
+
margin-left:5px;
|
| 417 |
+
margin-right:5px;
|
| 418 |
+
margin-top:0px;
|
| 419 |
+
/* box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
|
| 423 |
+
background-size: cover; /* Ensure the image covers the full page */
|
| 424 |
+
background-position: center;
|
| 425 |
+
|
| 426 |
+
overflow: hidden;
|
| 427 |
+
|
| 428 |
+
}}
|
| 429 |
+
.content-container {{
|
| 430 |
+
background: rgba(255, 255, 255, 0.05);
|
| 431 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ border-radius: 1px;
|
| 432 |
+
width: 28%;
|
| 433 |
+
margin-left: 150px;
|
| 434 |
+
/* margin-top: -60px;*/
|
| 435 |
+
margin-bottom: 10px;
|
| 436 |
+
margin-right:10px;
|
| 437 |
+
padding:0;
|
| 438 |
+
/* border-radius:0px 0px 15px 15px ;*/
|
| 439 |
+
border:1px solid transparent;
|
| 440 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 441 |
+
position: fixed; /* Fix the position of the container */
|
| 442 |
+
top: 10%; /* Adjust top offset */
|
| 443 |
+
left: 60%; /* Adjust left offset */
|
| 444 |
+
height: 89.5vh; /* Full viewport height */
|
| 445 |
+
|
| 446 |
+
}}
|
| 447 |
+
.content-container-principal img{{
|
| 448 |
+
margin-top:260px;
|
| 449 |
+
margin-left:30px;
|
| 450 |
+
}}
|
| 451 |
+
|
| 452 |
+
.content-container-principal
|
| 453 |
+
{{
|
| 454 |
+
background-color: rgba(173, 216, 230, 0.5); /* Light blue with 50% transparency */
|
| 455 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ border-radius: 1px;
|
| 456 |
+
width: 20%;
|
| 457 |
+
/* margin-top: -60px;*/
|
| 458 |
+
margin-bottom: 10px;
|
| 459 |
+
margin-right:10px;
|
| 460 |
+
margin:10px;
|
| 461 |
+
/* border-radius:0px 0px 15px 15px ;*/
|
| 462 |
+
border:1px solid transparent;
|
| 463 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 464 |
+
position: fixed; /* Fix the position of the container */
|
| 465 |
+
top: 7%; /* Adjust top offset */
|
| 466 |
+
/*left: 2%; Adjust left offset */
|
| 467 |
+
height: 84vh; /* Full viewport height */
|
| 468 |
+
|
| 469 |
+
}}
|
| 470 |
+
.content-container-principal-in
|
| 471 |
+
{{
|
| 472 |
+
background-color: rgba(173, 216, 230, 0.1); /* Light blue with 50% transparency */
|
| 473 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ border-radius: 1px;
|
| 474 |
+
width: 100%;
|
| 475 |
+
/* margin-top: -60px;*/
|
| 476 |
+
|
| 477 |
+
margin:1px;
|
| 478 |
+
/* border-radius:0px 0px 15px 15px ;*/
|
| 479 |
+
border:1px solid transparent;
|
| 480 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 481 |
+
position: fixed; /* Fix the position of the container */
|
| 482 |
+
height: 100.5vh; /* Full viewport height */
|
| 483 |
+
left:0%;
|
| 484 |
+
top:5%;
|
| 485 |
+
|
| 486 |
+
}}
|
| 487 |
+
div[data-testid="stText"] {{
|
| 488 |
+
background-color: transparent;
|
| 489 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ border-radius: 1px;
|
| 490 |
+
width: 132% !important;
|
| 491 |
+
background-color: rgba(173, 216, 230, 0.1); /* Light blue with 50% transparency */
|
| 492 |
+
|
| 493 |
+
margin-top: -36px;
|
| 494 |
+
margin-bottom: 10px;
|
| 495 |
+
margin-left:-220px !important;
|
| 496 |
+
padding:50px;
|
| 497 |
+
padding-bottom:20px;
|
| 498 |
+
padding-top:50px;
|
| 499 |
+
/* border-radius:0px 0px 15px 15px ;*/
|
| 500 |
+
border:1px solid transparent;
|
| 501 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 502 |
+
height: 85vh; !important; /* Full viewport height */
|
| 503 |
+
|
| 504 |
+
}}
|
| 505 |
+
.content-container2 {{
|
| 506 |
+
background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
|
| 507 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ border-radius: 1px;
|
| 508 |
+
width: 90%;
|
| 509 |
+
margin-left: 10px;
|
| 510 |
+
/* margin-top: -10px;*/
|
| 511 |
+
margin-bottom: 160px;
|
| 512 |
+
margin-right:10px;
|
| 513 |
+
padding:0;
|
| 514 |
+
border-radius:1px ;
|
| 515 |
+
border:1px solid transparent;
|
| 516 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 517 |
+
position: fixed; /* Fix the position of the container */
|
| 518 |
+
top: 3%; /* Adjust top offset */
|
| 519 |
+
left: 2.5%; /* Adjust left offset */
|
| 520 |
+
height: 78vh; /* Full viewport height */
|
| 521 |
+
|
| 522 |
+
}}
|
| 523 |
+
.content-container4 {{
|
| 524 |
+
background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
|
| 525 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ width: 40%;
|
| 526 |
+
margin-left: 10px;
|
| 527 |
+
margin-bottom: 160px;
|
| 528 |
+
margin-right:10px;
|
| 529 |
+
padding:0;
|
| 530 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 531 |
+
position: fixed; /* Fix the position of the container */
|
| 532 |
+
top: 60%; /* Adjust top offset */
|
| 533 |
+
left: 2.5%; /* Adjust left offset */
|
| 534 |
+
height: 10vh; /* Full viewport height */
|
| 535 |
+
|
| 536 |
+
}}
|
| 537 |
+
.content-container4 h3 ,p {{
|
| 538 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 539 |
+
font-size: 1rem;
|
| 540 |
+
font-weight: bold;
|
| 541 |
+
text-align:center;
|
| 542 |
+
}}
|
| 543 |
+
.content-container5 h3 ,p {{
|
| 544 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 545 |
+
font-size: 1rem;
|
| 546 |
+
font-weight: bold;
|
| 547 |
+
text-align:center;
|
| 548 |
+
}}
|
| 549 |
+
.content-container6 h3 ,p {{
|
| 550 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 551 |
+
font-size: 1rem;
|
| 552 |
+
font-weight: bold;
|
| 553 |
+
text-align:center;
|
| 554 |
+
}}
|
| 555 |
+
.content-container7 h3 ,p {{
|
| 556 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 557 |
+
font-size: 1rem;
|
| 558 |
+
font-weight: bold;
|
| 559 |
+
text-align:center;
|
| 560 |
+
}}
|
| 561 |
+
.content-container5 {{
|
| 562 |
+
background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
|
| 563 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ width: 40%;
|
| 564 |
+
margin-left: 180px;
|
| 565 |
+
margin-bottom: 130px;
|
| 566 |
+
margin-right:10px;
|
| 567 |
+
padding:0;
|
| 568 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 569 |
+
position: fixed; /* Fix the position of the container */
|
| 570 |
+
top: 60%; /* Adjust top offset */
|
| 571 |
+
left: 5.5%; /* Adjust left offset */
|
| 572 |
+
height: 10vh; /* Full viewport height */
|
| 573 |
+
|
| 574 |
+
}}
|
| 575 |
+
.content-container3 {{
|
| 576 |
+
background-color: rgba(216, 216, 230, 0.5); /* Light blue with 50% transparency */
|
| 577 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ border-radius: 1px;
|
| 578 |
+
width: 92%;
|
| 579 |
+
margin-left: 10px;
|
| 580 |
+
/* margin-top: -10px;*/
|
| 581 |
+
margin-bottom: 160px;
|
| 582 |
+
margin-right:10px;
|
| 583 |
+
padding:0;
|
| 584 |
+
border: 10px solid white;
|
| 585 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 586 |
+
position: fixed; /* Fix the position of the container */
|
| 587 |
+
top: 3%; /* Adjust top offset */
|
| 588 |
+
left: 1.5%; /* Adjust left offset */
|
| 589 |
+
height: 40vh; /* Full viewport height */
|
| 590 |
+
|
| 591 |
+
}}
|
| 592 |
+
.content-container6 {{
|
| 593 |
+
background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
|
| 594 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ width: 40%;
|
| 595 |
+
margin-left: 10px;
|
| 596 |
+
margin-bottom: 160px;
|
| 597 |
+
margin-right:10px;
|
| 598 |
+
padding:0;
|
| 599 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 600 |
+
position: fixed; /* Fix the position of the container */
|
| 601 |
+
top: 80%; /* Adjust top offset */
|
| 602 |
+
left: 2.5%; /* Adjust left offset */
|
| 603 |
+
height: 10vh; /* Full viewport height */
|
| 604 |
+
|
| 605 |
+
}}
|
| 606 |
+
.content-container7 {{
|
| 607 |
+
background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
|
| 608 |
+
backdrop-filter: blur(10px); /* Adds a slight blur effect */ width: 40%;
|
| 609 |
+
margin-left: 180px;
|
| 610 |
+
margin-bottom: 130px;
|
| 611 |
+
margin-right:10px;
|
| 612 |
+
padding:0;
|
| 613 |
+
overflow-y: auto; /* Enable vertical scrolling for the content */
|
| 614 |
+
position: fixed; /* Fix the position of the container */
|
| 615 |
+
top: 80%; /* Adjust top offset */
|
| 616 |
+
left: 5.5%; /* Adjust left offset */
|
| 617 |
+
height: 10vh; /* Full viewport height */
|
| 618 |
+
|
| 619 |
+
}}
|
| 620 |
+
.content-container2 img {{
|
| 621 |
+
width:99%;
|
| 622 |
+
height:50%;
|
| 623 |
+
|
| 624 |
+
}}
|
| 625 |
+
.content-container3 img {{
|
| 626 |
+
width:100%;
|
| 627 |
+
height:100%;
|
| 628 |
+
|
| 629 |
+
}}
|
| 630 |
+
div.stButton > button {{
|
| 631 |
+
background: rgba(255, 255, 255, 0.2);
|
| 632 |
+
color: orange !important; /* White text */
|
| 633 |
+
font-family: "Times New Roman " !important; /* Font */
|
| 634 |
+
font-size: 18px !important; /* Font size */
|
| 635 |
+
font-weight: bold !important; /* Bold text */
|
| 636 |
+
padding: 1px 2px; /* Padding for buttons */
|
| 637 |
+
border: none; /* Remove border */
|
| 638 |
+
border-radius: 5px; /* Rounded corners */
|
| 639 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
| 640 |
+
transition: all 0.3s ease-in-out; /* Smooth transition */
|
| 641 |
+
display: flex;
|
| 642 |
+
align-items: left;
|
| 643 |
+
justify-content: left;
|
| 644 |
+
margin-left:-50px ;
|
| 645 |
+
width:250px;
|
| 646 |
+
height:50px;
|
| 647 |
+
backdrop-filter: blur(10px);
|
| 648 |
+
z-index:1000;
|
| 649 |
+
text-align: left; /* Align text to the left */
|
| 650 |
+
padding-left: 50px;
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
}}
|
| 654 |
+
div.stButton > button p{{
|
| 655 |
+
color: {bg_color} !important; /* White text */
|
| 656 |
+
|
| 657 |
+
}}
|
| 658 |
+
/* Hover effect */
|
| 659 |
+
div.stButton > button:hover {{
|
| 660 |
+
background: rgba(255, 255, 255, 0.2);
|
| 661 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
|
| 662 |
+
transform: scale(1.05); /* Slightly enlarge button */
|
| 663 |
+
transform: scale(1.1); /* Slight zoom on hover */
|
| 664 |
+
box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
|
| 665 |
+
}}
|
| 666 |
+
div.stButton > button:active {{
|
| 667 |
+
background: rgba(199, 107, 26, 0.5);
|
| 668 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
|
| 669 |
+
|
| 670 |
+
}}
|
| 671 |
+
.titles{{
|
| 672 |
+
margin-top:20px !important;
|
| 673 |
+
margin-left: -150px !important;
|
| 674 |
+
|
| 675 |
+
}}
|
| 676 |
+
/* Title styling */
|
| 677 |
+
.titles h1{{
|
| 678 |
+
/*font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 679 |
+
font-size: 1.9rem;
|
| 680 |
+
/*font-weight: bold;*/
|
| 681 |
+
margin-left: 5px;
|
| 682 |
+
/* margin-top:-50px;*/
|
| 683 |
+
margin-bottom:50px;
|
| 684 |
+
padding: 0;
|
| 685 |
+
color: black; /* Neutral color for text */
|
| 686 |
+
}}
|
| 687 |
+
.titles > div{{
|
| 688 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 689 |
+
font-size: 1.01rem;
|
| 690 |
+
margin-left: -50px;
|
| 691 |
+
margin-bottom:1px;
|
| 692 |
+
padding: 0;
|
| 693 |
+
color:black; /* Neutral color for text */
|
| 694 |
+
}}
|
| 695 |
+
/* Recently viewed section */
|
| 696 |
+
.recently-viewed {{
|
| 697 |
+
display: flex;
|
| 698 |
+
align-items: center;
|
| 699 |
+
justify-content: flex-start; /* Align items to the extreme left */
|
| 700 |
+
margin-bottom: 10px;
|
| 701 |
+
margin-top: 20px;
|
| 702 |
+
gap: 10px; /* Add spacing between the elements */
|
| 703 |
+
padding-left: 20px; /* Add some padding if needed */
|
| 704 |
+
margin-left:35px;
|
| 705 |
+
height:100px;
|
| 706 |
+
|
| 707 |
+
}}
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
/* Style for the upload button */
|
| 714 |
+
[class*="st-key-upload-btn"] {{
|
| 715 |
+
position: absolute;
|
| 716 |
+
top: 100%; /* Position from the top of the inner circle */
|
| 717 |
+
left: -26%; /* Position horizontally at the center */
|
| 718 |
+
padding: 10px 20px;
|
| 719 |
+
color: red;
|
| 720 |
+
border: none;
|
| 721 |
+
border-radius: 20px;
|
| 722 |
+
cursor: pointer;
|
| 723 |
+
font-size: 35px !important;
|
| 724 |
+
width:30px;
|
| 725 |
+
height:20px;
|
| 726 |
+
}}
|
| 727 |
+
|
| 728 |
+
.upload-btn:hover {{
|
| 729 |
+
background-color: rgba(0, 123, 255, 1);
|
| 730 |
+
}}
|
| 731 |
+
div[data-testid="stFileUploader"] label > div > p {{
|
| 732 |
+
display:none;
|
| 733 |
+
color:white !important;
|
| 734 |
+
}}
|
| 735 |
+
section[data-testid="stFileUploaderDropzone"] {{
|
| 736 |
+
width:200px;
|
| 737 |
+
height: 60px;
|
| 738 |
+
background-color: white;
|
| 739 |
+
border-radius: 40px;
|
| 740 |
+
display: flex;
|
| 741 |
+
justify-content: center;
|
| 742 |
+
align-items: center;
|
| 743 |
+
margin-top:-10px;
|
| 744 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.3);
|
| 745 |
+
margin:20px;
|
| 746 |
+
background-color: rgba(255, 255, 255, 0.7); /* Transparent blue background */
|
| 747 |
+
color:white;
|
| 748 |
+
}}
|
| 749 |
+
div[data-testid="stFileUploaderDropzoneInstructions"] div > small{{
|
| 750 |
+
color:white !important;
|
| 751 |
+
display:none;
|
| 752 |
+
}}
|
| 753 |
+
div[data-testid="stFileUploaderDropzoneInstructions"] span{{
|
| 754 |
+
margin-left:65px;
|
| 755 |
+
color:{bg_color};
|
| 756 |
+
}}
|
| 757 |
+
div[data-testid="stFileUploaderDropzoneInstructions"] div{{
|
| 758 |
+
display:none;
|
| 759 |
+
}}
|
| 760 |
+
section[data-testid="stFileUploaderDropzone"] button{{
|
| 761 |
+
display:none;
|
| 762 |
+
}}
|
| 763 |
+
div[data-testid="stMarkdownContainer"] p {{
|
| 764 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 765 |
+
color:white !important;
|
| 766 |
+
}}
|
| 767 |
+
.highlight {{
|
| 768 |
+
border: 4px solid lime;
|
| 769 |
+
font-weight: bold;
|
| 770 |
+
background: radial-gradient(circle, rgba(0,255,0,0.3) 0%, rgba(0,0,0,0) 70%);
|
| 771 |
+
box-shadow: 0px 0px 30px 10px rgba(0, 255, 0, 0.9),
|
| 772 |
+
0px 0px 60px 20px rgba(0, 255, 0, 0.6),
|
| 773 |
+
inset 0px 0px 15px rgba(0, 255, 0, 0.8);
|
| 774 |
+
transition: all 0.3s ease-in-out;
|
| 775 |
+
|
| 776 |
+
}}
|
| 777 |
+
.highlight:hover {{
|
| 778 |
+
transform: scale(1.05);
|
| 779 |
+
background: radial-gradient(circle, rgba(0,255,0,0.6) 0%, rgba(0,0,0,0) 80%);
|
| 780 |
+
box-shadow: 0px 0px 40px 15px rgba(0, 255, 0, 1),
|
| 781 |
+
0px 0px 70px 30px rgba(0, 255, 0, 0.7),
|
| 782 |
+
inset 0px 0px 20px rgba(0, 255, 0, 1);
|
| 783 |
+
}}
|
| 784 |
+
.stCheckbox > label > div{{
|
| 785 |
+
width:303px !important;
|
| 786 |
+
height:3rem;
|
| 787 |
+
margin-top:270px;
|
| 788 |
+
margin-left:-72px;
|
| 789 |
+
border-radius:1px !important;
|
| 790 |
+
|
| 791 |
+
}}
|
| 792 |
+
.st-b1 {{
|
| 793 |
+
width:1.75rem;
|
| 794 |
+
height:1.75rem;
|
| 795 |
+
display:none;
|
| 796 |
+
}}
|
| 797 |
+
.stCheckbox > label > div:after {{
|
| 798 |
+
content: "SWITCH TO {model} MODEL";
|
| 799 |
+
display: block;
|
| 800 |
+
font-family: "Times New Roman", serif;
|
| 801 |
+
margin-top: 0.5em;
|
| 802 |
+
margin-left:20px;
|
| 803 |
+
font-weight:bold;
|
| 804 |
+
|
| 805 |
+
}}
|
| 806 |
+
.st-bj{{
|
| 807 |
+
display:none;
|
| 808 |
+
}}
|
| 809 |
+
.stCheckbox label{{
|
| 810 |
+
height:0px;
|
| 811 |
+
}}
|
| 812 |
+
.stCheckbox > label > div {{
|
| 813 |
+
background:{bg_color_iv} !important;
|
| 814 |
+
}}
|
| 815 |
+
</style>
|
| 816 |
+
<div class="logo-text-container">
|
| 817 |
+
<img src="data:image/png;base64,{encoded_logo}" alt="Logo">
|
| 818 |
+
<h1>KidneyScan AI<br>
|
| 819 |
+
|
| 820 |
+
</h1>
|
| 821 |
+
<i>Empowering Early Diagnosis with AI</ai>
|
| 822 |
+
|
| 823 |
+
|
| 824 |
+
</div>
|
| 825 |
+
""",
|
| 826 |
+
unsafe_allow_html=True,
|
| 827 |
+
)
|
| 828 |
+
loading_html = """
|
| 829 |
+
<style>
|
| 830 |
+
.loader {
|
| 831 |
+
border: 8px solid #f3f3f3;
|
| 832 |
+
border-top: 8px solid #0175C2; /* Blue color */
|
| 833 |
+
border-radius: 50%;
|
| 834 |
+
width: 50px;
|
| 835 |
+
height: 50px;
|
| 836 |
+
animation: spin 1s linear infinite;
|
| 837 |
+
margin: auto;
|
| 838 |
+
}
|
| 839 |
+
@keyframes spin {
|
| 840 |
+
0% { transform: rotate(0deg); }
|
| 841 |
+
100% { transform: rotate(360deg); }
|
| 842 |
+
}
|
| 843 |
+
|
| 844 |
+
</style>
|
| 845 |
+
<div class="loader"></div>
|
| 846 |
+
"""
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
# Sidebar content
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
# Use radio buttons for navigation
|
| 853 |
+
page = "pome"
|
| 854 |
+
# Sidebar buttons
|
| 855 |
+
|
| 856 |
+
# Display content based on the selected page
|
| 857 |
+
# Define the page content dynamically
|
| 858 |
+
if page == "Home":
|
| 859 |
+
|
| 860 |
+
# components.html(html_string) # JavaScript works
|
| 861 |
+
# st.markdown(html_string, unsafe_allow_html=True)
|
| 862 |
+
image_path = "images/image.jpg"
|
| 863 |
+
|
| 864 |
+
st.container()
|
| 865 |
+
st.markdown(
|
| 866 |
+
f"""
|
| 867 |
+
|
| 868 |
+
<div class="titles">
|
| 869 |
+
<h1>Kidney Disease Classfication</br> Using Transfer learning</h1>
|
| 870 |
+
<div> This web application utilizes deep learning to classify kidney ultrasound images</br>
|
| 871 |
+
into four categories: Normal, Cyst, Tumor, and Stone Class.
|
| 872 |
+
Built with Streamlit and powered by </br>a TensorFlow transfer learning
|
| 873 |
+
model based on <strong>VGG16</strong>
|
| 874 |
+
the app provides a simple and efficient way for users </br>
|
| 875 |
+
to upload kidney scans and receive instant predictions. The model analyzes the image
|
| 876 |
+
and classifies it based </br>on learned patterns, offering a confidence score for better interpretation.
|
| 877 |
+
</div>
|
| 878 |
+
</div>
|
| 879 |
+
""",
|
| 880 |
+
unsafe_allow_html=True,
|
| 881 |
+
)
|
| 882 |
+
uploaded_file = st.file_uploader(
|
| 883 |
+
"Choose a file", type=["png", "jpg", "jpeg"], key="upload-btn"
|
| 884 |
+
)
|
| 885 |
+
if uploaded_file is not None:
|
| 886 |
+
images = Image.open(uploaded_file)
|
| 887 |
+
# Rewind file pointer to the beginning
|
| 888 |
+
uploaded_file.seek(0)
|
| 889 |
+
|
| 890 |
+
file_content = uploaded_file.read() # Read file once
|
| 891 |
+
# Convert to base64 for HTML display
|
| 892 |
+
encoded_image = base64.b64encode(file_content).decode()
|
| 893 |
+
# Read and process image
|
| 894 |
+
pil_image = Image.open(uploaded_file).convert("RGB").resize((224, 224))
|
| 895 |
+
img_array = np.array(pil_image)
|
| 896 |
+
|
| 897 |
+
prediction = predict_image(images)
|
| 898 |
+
max_index = int(np.argmax(prediction[0]))
|
| 899 |
+
print(f"max index:{max_index}")
|
| 900 |
+
max_score = prediction[0][max_index]
|
| 901 |
+
predicted_class = np.argmax(prediction[0])
|
| 902 |
+
|
| 903 |
+
highlight_class = "highlight" # Special class for the highest confidence score
|
| 904 |
+
|
| 905 |
+
# Generate Grad-CAM
|
| 906 |
+
cam = generate_gradcam(pil_image, predicted_class)
|
| 907 |
+
|
| 908 |
+
# Create overlay
|
| 909 |
+
heatmap = cm.jet(cam)[..., :3]
|
| 910 |
+
heatmap = (heatmap * 255).astype(np.uint8)
|
| 911 |
+
overlayed_image = cv2.addWeighted(img_array, 0.6, heatmap, 0.4, 0)
|
| 912 |
+
|
| 913 |
+
# Convert to PIL
|
| 914 |
+
overlayed_pil = Image.fromarray(overlayed_image)
|
| 915 |
+
# Convert to base64
|
| 916 |
+
orig_b64 = convert_image_to_base64(pil_image)
|
| 917 |
+
overlay_b64 = convert_image_to_base64(overlayed_pil)
|
| 918 |
+
content = f"""
|
| 919 |
+
<div class="content-container">
|
| 920 |
+
<!-- Title -->
|
| 921 |
+
<!-- Recently Viewed Section -->
|
| 922 |
+
<div class="content-container2">
|
| 923 |
+
<div class="content-container3">
|
| 924 |
+
<img src="data:image/png;base64,{orig_b64}" alt="Uploaded Image">
|
| 925 |
+
</div>
|
| 926 |
+
<div class="content-container3">
|
| 927 |
+
<img src="data:image/png;base64,{overlay_b64}" class="result-image">
|
| 928 |
+
</div>
|
| 929 |
+
<div class="content-container4 {'highlight' if max_index == 0 else ''}">
|
| 930 |
+
<h3>{class_labels[0]}</h3>
|
| 931 |
+
<p>T Score: {prediction[0][0]:.2f}</p>
|
| 932 |
+
</div>
|
| 933 |
+
<div class="content-container5 {'highlight' if max_index == 1 else ''}">
|
| 934 |
+
<h3> {class_labels[1]}</h3>
|
| 935 |
+
<p>T Score: {prediction[0][1]:.2f}</p>
|
| 936 |
+
</div>
|
| 937 |
+
<div class="content-container6 {'highlight' if max_index == 2 else ''}">
|
| 938 |
+
<h3> {class_labels[2]}</h3>
|
| 939 |
+
<p>T Score: {prediction[0][2]:.2f}</p>
|
| 940 |
+
</div>
|
| 941 |
+
<div class="content-container7 {'highlight' if max_index == 3 else ''}">
|
| 942 |
+
<h3>{class_labels[3]}</h3>
|
| 943 |
+
<p>T Score: {prediction[0][3]:.2f}</p>
|
| 944 |
+
</div>
|
| 945 |
+
|
| 946 |
+
|
| 947 |
+
"""
|
| 948 |
+
|
| 949 |
+
# Close the gallery and content div
|
| 950 |
+
|
| 951 |
+
# Render the content
|
| 952 |
+
placeholder = st.empty() # Create a placeholder
|
| 953 |
+
placeholder.markdown(loading_html, unsafe_allow_html=True)
|
| 954 |
+
time.sleep(5) # Wait for 5 seconds
|
| 955 |
+
placeholder.empty()
|
| 956 |
+
st.markdown(content, unsafe_allow_html=True)
|
| 957 |
+
else:
|
| 958 |
+
default_image_path = "images/image.jpg"
|
| 959 |
+
with open(image_path, "rb") as image_file:
|
| 960 |
+
encoded_image = base64.b64encode(image_file.read()).decode()
|
| 961 |
+
|
| 962 |
+
st.markdown(
|
| 963 |
+
f"""
|
| 964 |
+
<div class="content-container">
|
| 965 |
+
<!-- Title -->
|
| 966 |
+
<!-- Recently Viewed Section -->
|
| 967 |
+
<div class="content-container2">
|
| 968 |
+
<div class="content-container3">
|
| 969 |
+
<img src="data:image/png;base64,{encoded_image}" alt="Default Image">
|
| 970 |
+
</div>
|
| 971 |
+
</div>
|
| 972 |
+
|
| 973 |
+
""",
|
| 974 |
+
unsafe_allow_html=True,
|
| 975 |
+
)
|
| 976 |
+
if page == "pome":
|
| 977 |
+
gif_path = "images/bg3.gif"
|
| 978 |
+
with open(gif_path, "rb") as image_file:
|
| 979 |
+
encode_image = base64.b64encode(image_file.read()).decode()
|
| 980 |
+
st.markdown(
|
| 981 |
+
f"""
|
| 982 |
+
|
| 983 |
+
<div class="content-container-principal-in">
|
| 984 |
+
<div class="content-container-principal">
|
| 985 |
+
<img src="data:image/png;base64,{encode_image}" alt="Default Image">
|
| 986 |
+
|
| 987 |
+
</div>
|
| 988 |
+
</div>
|
| 989 |
+
|
| 990 |
+
""",
|
| 991 |
+
unsafe_allow_html=True,
|
| 992 |
+
)
|
| 993 |
+
col1, col2 = st.columns([1, 2]) # Adjust column widths
|
| 994 |
+
with col1:
|
| 995 |
+
if st.button("📄 Model Summary"):
|
| 996 |
+
st.session_state.menu ="1" # Store state
|
| 997 |
+
st.rerun()
|
| 998 |
+
|
| 999 |
+
# Add your model description logic here
|
| 1000 |
+
|
| 1001 |
+
if st.button("📊 Model Results Analysis",key="header"):
|
| 1002 |
+
st.session_state.menu ="2"
|
| 1003 |
+
st.rerun()
|
| 1004 |
+
# Add model analysis logic here
|
| 1005 |
+
if st.button("🧪 Model Testing"):
|
| 1006 |
+
st.session_state.menu ="3"
|
| 1007 |
+
st.rerun()
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
# Toggle switch UI
|
| 1013 |
+
def framework_toggle():
|
| 1014 |
+
toggle = st.toggle("Enable PyTorch", value=(st.session_state.framework == "PyTorch"))
|
| 1015 |
+
|
| 1016 |
+
if toggle and st.session_state.framework != "PyTorch":
|
| 1017 |
+
st.session_state.framework = "PyTorch"
|
| 1018 |
+
st.session_state.model = torch.load('models/kidney_model .pth', map_location=torch.device('cpu'))
|
| 1019 |
+
st.rerun()
|
| 1020 |
+
elif not toggle and st.session_state.framework != "TensorFlow":
|
| 1021 |
+
st.session_state.framework = "TensorFlow"
|
| 1022 |
+
st.session_state.model = tf.keras.models.load_model(
|
| 1023 |
+
"models/best_model.h5"
|
| 1024 |
+
)
|
| 1025 |
+
st.rerun()
|
| 1026 |
+
print(st.session_state.framework)
|
| 1027 |
+
|
| 1028 |
+
framework_toggle()
|
| 1029 |
+
|
| 1030 |
+
|
| 1031 |
+
# Custom CSS for table styling
|
| 1032 |
+
table_style = """
|
| 1033 |
+
<style>
|
| 1034 |
+
table {
|
| 1035 |
+
width: 110%;
|
| 1036 |
+
border-collapse: collapse;
|
| 1037 |
+
border-radius: 2px;
|
| 1038 |
+
overflow: hidden;
|
| 1039 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.4);
|
| 1040 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1041 |
+
backdrop-filter: blur(10px);
|
| 1042 |
+
font-family: "Times New Roman", serif;
|
| 1043 |
+
margin-left:-100px;
|
| 1044 |
+
margin-top:10px;
|
| 1045 |
+
}
|
| 1046 |
+
thead {
|
| 1047 |
+
background: rgba(255, 255, 255, 0.2);
|
| 1048 |
+
}
|
| 1049 |
+
th {
|
| 1050 |
+
padding: 12px;
|
| 1051 |
+
text-align: left;
|
| 1052 |
+
font-weight: bold;
|
| 1053 |
+
backdrop-filter: blur(10px);
|
| 1054 |
+
}
|
| 1055 |
+
td {
|
| 1056 |
+
padding: 12px;
|
| 1057 |
+
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
|
| 1058 |
+
}
|
| 1059 |
+
tr:hover {
|
| 1060 |
+
background-color: rgba(255, 255, 255, 0.1);
|
| 1061 |
+
}
|
| 1062 |
+
tbody {
|
| 1063 |
+
display: block;
|
| 1064 |
+
max-height: 580px; /* Set the fixed height */
|
| 1065 |
+
overflow-y: auto;
|
| 1066 |
+
width: 100%;
|
| 1067 |
+
}
|
| 1068 |
+
thead, tbody tr {
|
| 1069 |
+
display: table;
|
| 1070 |
+
width: 100%;
|
| 1071 |
+
table-layout: fixed;
|
| 1072 |
+
}
|
| 1073 |
+
</style>
|
| 1074 |
+
"""
|
| 1075 |
+
|
| 1076 |
+
with col2:
|
| 1077 |
+
if st.session_state.show_summary:
|
| 1078 |
+
layers_data = []
|
| 1079 |
+
print(st.session_state)
|
| 1080 |
+
if st.session_state.framework == "TensorFlow":
|
| 1081 |
+
for layer in st.session_state.model.layers:
|
| 1082 |
+
try:
|
| 1083 |
+
shape = {layer.output.shape}
|
| 1084 |
+
except Exception:
|
| 1085 |
+
shape = "N/A"
|
| 1086 |
+
|
| 1087 |
+
if isinstance(shape, tuple):
|
| 1088 |
+
shape = str(shape)
|
| 1089 |
+
elif isinstance(shape, list):
|
| 1090 |
+
shape = ", ".join(str(s) for s in shape)
|
| 1091 |
+
elif shape is None:
|
| 1092 |
+
shape = "N/A"
|
| 1093 |
+
|
| 1094 |
+
param_count = f"{layer.count_params():,}"
|
| 1095 |
+
|
| 1096 |
+
layers_data.append(
|
| 1097 |
+
(layer.name, layer.__class__.__name__, shape, param_count)
|
| 1098 |
+
)
|
| 1099 |
+
print(layers_data)
|
| 1100 |
+
|
| 1101 |
+
elif st.session_state.framework == "PyTorch":
|
| 1102 |
+
layers_data = get_layers_data(st.session_state.model) # Get layer information
|
| 1103 |
+
|
| 1104 |
+
|
| 1105 |
+
# Convert to HTML table
|
| 1106 |
+
table_html = "<table><tr><th>Layer Name</th><th>Type</th><th>Output Shape</th><th>Param #</th></tr>"
|
| 1107 |
+
for name, layer_type, shape, params in layers_data:
|
| 1108 |
+
table_html += f"<tr><td>{name}</td><td>{layer_type}</td><td>{shape}</td><td>{params}</td></tr>"
|
| 1109 |
+
table_html += "</table>"
|
| 1110 |
+
|
| 1111 |
+
# Render table with custom styling
|
| 1112 |
+
st.markdown(table_style + table_html, unsafe_allow_html=True)
|
| 1113 |
+
if st.session_state.show_arch:
|
| 1114 |
+
|
| 1115 |
+
if st.session_state.framework == "TensorFlow":
|
| 1116 |
+
y_true = np.concatenate([y.numpy() for _, y in test_dataset])
|
| 1117 |
+
|
| 1118 |
+
# Get model predictions
|
| 1119 |
+
y_pred_probs = st.session_state.model.predict(test_dataset)
|
| 1120 |
+
y_pred = np.argmax(y_pred_probs, axis=1)
|
| 1121 |
+
|
| 1122 |
+
# Convert one-hot true labels to class indices
|
| 1123 |
+
y_true = np.argmax(y_true, axis=1)
|
| 1124 |
+
|
| 1125 |
+
# Class names (modify for your dataset)
|
| 1126 |
+
class_names = ["Cyst", "Normal", "Stone", "Tumor"]
|
| 1127 |
+
|
| 1128 |
+
# Generate classification report as a dictionary
|
| 1129 |
+
report_dict = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)
|
| 1130 |
+
|
| 1131 |
+
# Convert to DataFrame
|
| 1132 |
+
report_df = pd.DataFrame(report_dict).transpose().round(2)
|
| 1133 |
+
|
| 1134 |
+
accuracy = report_dict["accuracy"]
|
| 1135 |
+
precision = report_df.loc["weighted avg", "precision"]
|
| 1136 |
+
recall = report_df.loc["weighted avg", "recall"]
|
| 1137 |
+
f1_score = report_df.loc["weighted avg", "f1-score"]
|
| 1138 |
+
elif st.session_state.framework == "PyTorch":
|
| 1139 |
+
y_true = []
|
| 1140 |
+
y_pred = []
|
| 1141 |
+
for image, label in test_dataset: # test_dataset is an instance of ImageFolder or similar
|
| 1142 |
+
image = image.unsqueeze(0) # Add batch dimension and move to device
|
| 1143 |
+
label = label
|
| 1144 |
+
|
| 1145 |
+
with torch.no_grad():
|
| 1146 |
+
output = st.session_state.model(image) # Get model output
|
| 1147 |
+
_, predicted = torch.max(output, 1) # Get predicted class
|
| 1148 |
+
|
| 1149 |
+
y_true.append(label) # Append true label
|
| 1150 |
+
y_pred.append(predicted.item()) # Append predicted label
|
| 1151 |
+
|
| 1152 |
+
# Generate the classification report
|
| 1153 |
+
report_dict = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)
|
| 1154 |
+
|
| 1155 |
+
# Convert to DataFrame for better readability
|
| 1156 |
+
report_df = pd.DataFrame(report_dict).transpose().round(2)
|
| 1157 |
+
|
| 1158 |
+
accuracy = report_dict["accuracy"]
|
| 1159 |
+
precision = report_df.loc["weighted avg", "precision"]
|
| 1160 |
+
recall = report_df.loc["weighted avg", "recall"]
|
| 1161 |
+
f1_score = report_df.loc["weighted avg", "f1-score"]
|
| 1162 |
+
|
| 1163 |
+
|
| 1164 |
+
|
| 1165 |
+
st.markdown("""
|
| 1166 |
+
<style>
|
| 1167 |
+
.kpi-container {
|
| 1168 |
+
display: flex;
|
| 1169 |
+
justify-content: space-between;
|
| 1170 |
+
margin-bottom: 20px;
|
| 1171 |
+
margin-left:-80px;
|
| 1172 |
+
margin-top:-30px;
|
| 1173 |
+
|
| 1174 |
+
}
|
| 1175 |
+
.kpi-card {
|
| 1176 |
+
width: 23%;
|
| 1177 |
+
padding: 15px;
|
| 1178 |
+
text-align: center;
|
| 1179 |
+
border-radius: 10px;
|
| 1180 |
+
font-size: 22px;
|
| 1181 |
+
font-weight: bold;
|
| 1182 |
+
font-family: "Times New Roman " !important; /* Font */
|
| 1183 |
+
color: #333;
|
| 1184 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1185 |
+
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
|
| 1186 |
+
border: 5px solid rgba(173, 216, 230, 0.4);
|
| 1187 |
+
}
|
| 1188 |
+
</style>
|
| 1189 |
+
<div class="kpi-container">
|
| 1190 |
+
<div class="kpi-card">Precision<br>""" + f"{precision:.2f}" + """</div>
|
| 1191 |
+
<div class="kpi-card">Recall<br>""" + f"{recall:.2f}" + """</div>
|
| 1192 |
+
<div class="kpi-card">Accuracy<br>""" + f"{accuracy:.2f}" + """</div>
|
| 1193 |
+
<div class="kpi-card">F1-Score<br>""" + f"{f1_score:.2f}" + """</div>
|
| 1194 |
+
</div>
|
| 1195 |
+
""", unsafe_allow_html=True)
|
| 1196 |
+
|
| 1197 |
+
|
| 1198 |
+
# Remove last rows (accuracy/macro avg/weighted avg) and reset index
|
| 1199 |
+
report_df = report_df.iloc[:-3].reset_index()
|
| 1200 |
+
report_df.rename(columns={"index": "Class"}, inplace=True)
|
| 1201 |
+
|
| 1202 |
+
# Custom CSS for Table Styling
|
| 1203 |
+
st.markdown("""
|
| 1204 |
+
<style>
|
| 1205 |
+
.report-container {
|
| 1206 |
+
max-height: 250px;
|
| 1207 |
+
overflow-y: auto;
|
| 1208 |
+
border-radius: 25px;
|
| 1209 |
+
text-align:center;
|
| 1210 |
+
border: 5px solid rgba(173, 216, 230, 0.4);
|
| 1211 |
+
padding: 10px;
|
| 1212 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1213 |
+
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
|
| 1214 |
+
width:480px;
|
| 1215 |
+
margin-left:-80px;
|
| 1216 |
+
margin-top:-20px;
|
| 1217 |
+
}
|
| 1218 |
+
.report-container h4{
|
| 1219 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
| 1220 |
+
font-size: 1rem;
|
| 1221 |
+
margin-left: 5px;
|
| 1222 |
+
margin-bottom:1px;
|
| 1223 |
+
padding: 10px;
|
| 1224 |
+
color:#333;
|
| 1225 |
+
|
| 1226 |
+
}
|
| 1227 |
+
.report-table {
|
| 1228 |
+
width: 100%;
|
| 1229 |
+
border-collapse: collapse;
|
| 1230 |
+
font-family: 'Times New Roman', serif;
|
| 1231 |
+
text-align: center;
|
| 1232 |
+
}
|
| 1233 |
+
.report-table th {
|
| 1234 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1235 |
+
font-size: 16px;
|
| 1236 |
+
padding: 10px;
|
| 1237 |
+
border-bottom: 2px solid #444;
|
| 1238 |
+
}
|
| 1239 |
+
.report-table td {
|
| 1240 |
+
font-size: 12px;
|
| 1241 |
+
padding: 10px;
|
| 1242 |
+
border-bottom: 1px solid #ddd;
|
| 1243 |
+
}
|
| 1244 |
+
</style>
|
| 1245 |
+
""", unsafe_allow_html=True)
|
| 1246 |
+
col1,col2 = st.columns([3,3])
|
| 1247 |
+
with col1:
|
| 1248 |
+
# Convert DataFrame to HTML Table
|
| 1249 |
+
report_html = report_df.to_html(index=False, classes="report-table", escape=False)
|
| 1250 |
+
st.markdown(f'<div class="report-container"><h4>classification report </h4>{report_html}</div>', unsafe_allow_html=True)
|
| 1251 |
+
# Generate Confusion Matrix
|
| 1252 |
+
# Generate Confusion Matrix
|
| 1253 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 1254 |
+
|
| 1255 |
+
# Create Confusion Matrix Heatmap
|
| 1256 |
+
fig, ax = plt.subplots(figsize=(1, 1))
|
| 1257 |
+
fig.patch.set_alpha(0) # Make figure background transparent
|
| 1258 |
+
|
| 1259 |
+
# Seaborn Heatmap (Confusion Matrix)
|
| 1260 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
|
| 1261 |
+
xticklabels=class_names, yticklabels=class_names,
|
| 1262 |
+
linewidths=1, linecolor="black",
|
| 1263 |
+
cbar=False, square=True, alpha=0.9,
|
| 1264 |
+
annot_kws={"size": 5, "family": "Times New Roman"})
|
| 1265 |
+
# Change font for tick labels
|
| 1266 |
+
for text in ax.texts:
|
| 1267 |
+
text.set_bbox(dict(facecolor='none', edgecolor='none', alpha=0))
|
| 1268 |
+
plt.xticks(fontsize=4, family="Times New Roman") # X-axis font
|
| 1269 |
+
plt.yticks(fontsize=4, family="Times New Roman") # Y-axis font
|
| 1270 |
+
# Enhance Labels and Title
|
| 1271 |
+
|
| 1272 |
+
plt.title("Confusion Matrix", fontsize=5, family="Times New Roman",color="black", loc='center')
|
| 1273 |
+
|
| 1274 |
+
# Apply transparent background and double border (via Streamlit Markdown)
|
| 1275 |
+
st.markdown("""
|
| 1276 |
+
<style>
|
| 1277 |
+
div[data-testid="stImageContainer"] {
|
| 1278 |
+
max-height: 250px;
|
| 1279 |
+
overflow-y: auto;
|
| 1280 |
+
border-radius: 25px;
|
| 1281 |
+
text-align:center;
|
| 1282 |
+
border: 5px solid rgba(173, 216, 230, 0.4);
|
| 1283 |
+
padding: 10px;
|
| 1284 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1285 |
+
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
|
| 1286 |
+
width:480px !important;
|
| 1287 |
+
margin-left:-80px;
|
| 1288 |
+
margin-top:-20px;
|
| 1289 |
+
|
| 1290 |
+
}
|
| 1291 |
+
div[data-testid="stImageContainer"] img{
|
| 1292 |
+
margin-top:-10px !important;
|
| 1293 |
+
width:400px !important;
|
| 1294 |
+
height:250px !important;
|
| 1295 |
+
}
|
| 1296 |
+
[class*="st-key-roc"] div[data-testid="stImageContainer"] {
|
| 1297 |
+
max-height: 250px;
|
| 1298 |
+
overflow-y: auto;
|
| 1299 |
+
border-radius: 25px;
|
| 1300 |
+
text-align:center;
|
| 1301 |
+
border: 5px solid rgba(173, 216, 230, 0.4);
|
| 1302 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1303 |
+
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
|
| 1304 |
+
width:480px;
|
| 1305 |
+
margin-left:-35px;
|
| 1306 |
+
margin-top:-15px;
|
| 1307 |
+
}
|
| 1308 |
+
[class*="st-key-roc"] div[data-testid="stImageContainer"] img{
|
| 1309 |
+
width:480px !important;
|
| 1310 |
+
height:250px !important;
|
| 1311 |
+
margin-top:-20px !important;
|
| 1312 |
+
|
| 1313 |
+
}
|
| 1314 |
+
[class*="st-key-precision"] div[data-testid="stImageContainer"] {
|
| 1315 |
+
max-height: 250px;
|
| 1316 |
+
overflow-y: auto;
|
| 1317 |
+
border-radius: 25px;
|
| 1318 |
+
text-align:center;
|
| 1319 |
+
border: 5px solid rgba(173, 216, 230, 0.4);
|
| 1320 |
+
background: rgba(255, 255, 255, 0.05);
|
| 1321 |
+
box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
|
| 1322 |
+
width:480px;
|
| 1323 |
+
margin-left:-35px;
|
| 1324 |
+
margin-top:-5px;
|
| 1325 |
+
}
|
| 1326 |
+
[class*="st-key-precision"] div[data-testid="stImageContainer"] img{
|
| 1327 |
+
width:480px !important;
|
| 1328 |
+
height:250px !important;
|
| 1329 |
+
margin-top:-20px !important;
|
| 1330 |
+
|
| 1331 |
+
}
|
| 1332 |
+
</style>
|
| 1333 |
+
""", unsafe_allow_html=True)
|
| 1334 |
+
|
| 1335 |
+
# Show Plot in Streamlit inside a styled container
|
| 1336 |
+
st.markdown('<div class="confusion-matrix-container">', unsafe_allow_html=True)
|
| 1337 |
+
st.pyplot(fig)
|
| 1338 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 1339 |
+
|
| 1340 |
+
with col2:
|
| 1341 |
+
if st.session_state.framework == "TensorFlow":
|
| 1342 |
+
# Binarizing the true labels for multi-class classification
|
| 1343 |
+
y_true_bin = label_binarize(y_true, classes=np.arange(len(class_names)))
|
| 1344 |
+
|
| 1345 |
+
# Calculating ROC curve and AUC for each class
|
| 1346 |
+
fpr, tpr, roc_auc = {}, {}, {}
|
| 1347 |
+
|
| 1348 |
+
for i in range(len(class_names)):
|
| 1349 |
+
fpr[i], tpr[i], _ = roc_curve(y_true_bin[:, i], y_pred_probs[:, i])
|
| 1350 |
+
roc_auc[i] = auc(fpr[i], tpr[i])
|
| 1351 |
+
|
| 1352 |
+
# Plotting ROC curve for each class
|
| 1353 |
+
plt.figure(figsize=(11, 9))
|
| 1354 |
+
|
| 1355 |
+
for i in range(len(class_names)):
|
| 1356 |
+
plt.plot(fpr[i], tpr[i], lw=2, label=f'{class_names[i]} (AUC = {roc_auc[i]:.2f})')
|
| 1357 |
+
|
| 1358 |
+
# Plot random guess line
|
| 1359 |
+
plt.plot([0, 1], [0, 1], color='navy', lw=5, linestyle='--')
|
| 1360 |
+
|
| 1361 |
+
# Labels and legend
|
| 1362 |
+
plt.xlim([0.0, 1.0])
|
| 1363 |
+
plt.ylim([0.0, 1.05])
|
| 1364 |
+
plt.xlabel('False Positive Rate',fontsize=28,family="Times New Roman")
|
| 1365 |
+
plt.ylabel('True Positive Rate',fontsize=28,family="Times New Roman")
|
| 1366 |
+
plt.title('ROC Curve (One-vs-Rest) for Each Class',fontsize=30, family="Times New Roman",color="black", loc='center',pad=3)
|
| 1367 |
+
plt.legend(loc='lower right',fontsize=18)
|
| 1368 |
+
# Save the plot as an image
|
| 1369 |
+
plt.savefig('roc_curve.png', transparent=True)
|
| 1370 |
+
plt.close()
|
| 1371 |
+
|
| 1372 |
+
# Display the plot in Streamlit
|
| 1373 |
+
with st.container(key="roc"):
|
| 1374 |
+
st.image('roc_curve.png')
|
| 1375 |
+
elif st.session_state.framework == "PyTorch":
|
| 1376 |
+
# Display the ROC curve in Streamlit
|
| 1377 |
+
with st.container(key="roc"):
|
| 1378 |
+
st.image('roc-py.png')
|
| 1379 |
+
|
| 1380 |
+
with st.container(key="precision"):
|
| 1381 |
+
st.image('precision_recall_curve.png')
|
| 1382 |
+
if st.session_state.show_desc:
|
| 1383 |
+
# components.html(html_string) # JavaScript works
|
| 1384 |
+
# st.markdown(html_string, unsafe_allow_html=True)
|
| 1385 |
+
image_path = "images/image.jpg"
|
| 1386 |
+
|
| 1387 |
+
st.container()
|
| 1388 |
+
st.markdown(
|
| 1389 |
+
f"""
|
| 1390 |
+
|
| 1391 |
+
<div class="titles">
|
| 1392 |
+
<h1>Kidney Disease Classfication</br> Using Deep learning</h1>
|
| 1393 |
+
<div> This web application utilizes deep learning to classify kidney ultrasound images</br>
|
| 1394 |
+
into four categories: Normal, Cyst, Tumor, and Stone Class.
|
| 1395 |
+
Built with Streamlit and powered by </br>a TensorFlow transfer learning
|
| 1396 |
+
model based on <strong>VGG16</strong>
|
| 1397 |
+
the app provides a simple and efficient way for users </br>
|
| 1398 |
+
to upload kidney scans and receive instant predictions. The model analyzes the image
|
| 1399 |
+
and classifies it based </br>on learned patterns, offering a confidence score for better interpretation.
|
| 1400 |
+
</div>
|
| 1401 |
+
</div>
|
| 1402 |
+
""",
|
| 1403 |
+
unsafe_allow_html=True,
|
| 1404 |
+
)
|
| 1405 |
+
uploaded_file = st.file_uploader(
|
| 1406 |
+
"Choose a file", type=["png", "jpg", "jpeg"], key="upload-btn"
|
| 1407 |
+
)
|
| 1408 |
+
if uploaded_file is not None:
|
| 1409 |
+
images = Image.open(uploaded_file)
|
| 1410 |
+
# Rewind file pointer to the beginning
|
| 1411 |
+
uploaded_file.seek(0)
|
| 1412 |
+
|
| 1413 |
+
file_content = uploaded_file.read() # Read file once
|
| 1414 |
+
# Convert to base64 for HTML display
|
| 1415 |
+
encoded_image = base64.b64encode(file_content).decode()
|
| 1416 |
+
# Read and process image
|
| 1417 |
+
pil_image = Image.open(uploaded_file).convert("RGB").resize((224, 224))
|
| 1418 |
+
img_array = np.array(pil_image)
|
| 1419 |
+
|
| 1420 |
+
prediction = predict_image(images)
|
| 1421 |
+
if st.session_state.framework == "TensorFlow":
|
| 1422 |
+
max_index = int(np.argmax(prediction[0]))
|
| 1423 |
+
print(f"max index:{max_index}")
|
| 1424 |
+
max_score = prediction[0][max_index]
|
| 1425 |
+
predicted_class = np.argmax(prediction[0])
|
| 1426 |
+
|
| 1427 |
+
highlight_class = "highlight" # Special class for the highest confidence score
|
| 1428 |
+
|
| 1429 |
+
# Generate Grad-CAM
|
| 1430 |
+
cam = generate_gradcam(pil_image, predicted_class)
|
| 1431 |
+
|
| 1432 |
+
# Create overlay
|
| 1433 |
+
heatmap = cm.jet(cam)[..., :3]
|
| 1434 |
+
heatmap = (heatmap * 255).astype(np.uint8)
|
| 1435 |
+
overlayed_image = cv2.addWeighted(img_array, 0.6, heatmap, 0.4, 0)
|
| 1436 |
+
|
| 1437 |
+
# Convert to PIL
|
| 1438 |
+
overlayed_pil = Image.fromarray(overlayed_image)
|
| 1439 |
+
# Convert to base64
|
| 1440 |
+
orig_b64 = convert_image_to_base64(pil_image)
|
| 1441 |
+
overlay_b64 = convert_image_to_base64(overlayed_pil)
|
| 1442 |
+
content = f"""
|
| 1443 |
+
<div class="content-container">
|
| 1444 |
+
<!-- Title -->
|
| 1445 |
+
<!-- Recently Viewed Section -->
|
| 1446 |
+
<div class="content-container3">
|
| 1447 |
+
<img src="data:image/png;base64,{orig_b64}" alt="Uploaded Image">
|
| 1448 |
+
</div>
|
| 1449 |
+
<div class="content-container3">
|
| 1450 |
+
<img src="data:image/png;base64,{overlay_b64}" class="result-image">
|
| 1451 |
+
</div>
|
| 1452 |
+
<div class="content-container4 {'highlight' if max_index == 0 else ''}">
|
| 1453 |
+
<h3>{class_labels[0]}</h3>
|
| 1454 |
+
<p>T Score: {prediction[0][0]:.2f}</p>
|
| 1455 |
+
</div>
|
| 1456 |
+
<div class="content-container5 {'highlight' if max_index == 1 else ''}">
|
| 1457 |
+
<h3> {class_labels[1]}</h3>
|
| 1458 |
+
<p>T Score: {prediction[0][1]:.2f}</p>
|
| 1459 |
+
</div>
|
| 1460 |
+
<div class="content-container6 {'highlight' if max_index == 2 else ''}">
|
| 1461 |
+
<h3> {class_labels[2]}</h3>
|
| 1462 |
+
<p>T Score: {prediction[0][2]:.2f}</p>
|
| 1463 |
+
</div>
|
| 1464 |
+
<div class="content-container7 {'highlight' if max_index == 3 else ''}">
|
| 1465 |
+
<h3>{class_labels[3]}</h3>
|
| 1466 |
+
<p>T Score: {prediction[0][3]:.2f}</p>
|
| 1467 |
+
</div>
|
| 1468 |
+
|
| 1469 |
+
|
| 1470 |
+
"""
|
| 1471 |
+
elif st.session_state.framework == "PyTorch":
|
| 1472 |
+
class0, class1,prediction = predict_image(images)
|
| 1473 |
+
max_index = int(np.argmax(prediction[0]))
|
| 1474 |
+
print(f"max index:{max_index}")
|
| 1475 |
+
max_score = prediction[0][max_index]
|
| 1476 |
+
predicted_class = np.argmax(prediction[0])
|
| 1477 |
+
print(f"predicted class is :{predicted_class}")
|
| 1478 |
+
#cams = generate_gradcams(pil_image, predicted_class)
|
| 1479 |
+
#heatmap = cm.jet(cams)[..., :3]
|
| 1480 |
+
#heatmap = (heatmap * 255).astype(np.uint8)
|
| 1481 |
+
#overlayed_image = cv2.addWeighted(img_array, 0.6, heatmap, 0.4, 0)
|
| 1482 |
+
|
| 1483 |
+
# Convert to PIL
|
| 1484 |
+
#overlayed_pil = Image.fromarray(overlayed_image)
|
| 1485 |
+
# Convert to base64
|
| 1486 |
+
orig_b64 = convert_image_to_base64(pil_image)
|
| 1487 |
+
#overlay_b64 = convert_image_to_base64(overlayed_pil)
|
| 1488 |
+
highlight_class = "highlight" # Special class for the highest confidence score
|
| 1489 |
+
|
| 1490 |
+
# Generate Grad-CAM
|
| 1491 |
+
|
| 1492 |
+
# Create overlay
|
| 1493 |
+
|
| 1494 |
+
orig_b64 = convert_image_to_base64(pil_image)
|
| 1495 |
+
content = f"""
|
| 1496 |
+
<div class="content-container">
|
| 1497 |
+
<!-- Title -->
|
| 1498 |
+
<!-- Recently Viewed Section -->
|
| 1499 |
+
<div class="content-container3">
|
| 1500 |
+
<img src="data:image/png;base64,{orig_b64}" alt="Uploaded Image">
|
| 1501 |
+
</div>
|
| 1502 |
+
<div class="content-container4 {'highlight' if max_index == 0 else ''}">
|
| 1503 |
+
<h3>{class_labels[0]}</h3>
|
| 1504 |
+
<p>T Score: {prediction[0][0]:.2f}</p>
|
| 1505 |
+
</div>
|
| 1506 |
+
<div class="content-container5 {'highlight' if max_index == 1 else ''}">
|
| 1507 |
+
<h3> {class_labels[1]}</h3>
|
| 1508 |
+
<p>T Score: {prediction[0][1]:.2f}</p>
|
| 1509 |
+
</div>
|
| 1510 |
+
<div class="content-container6 {'highlight' if max_index == 2 else ''}">
|
| 1511 |
+
<h3> {class_labels[2]}</h3>
|
| 1512 |
+
<p>T Score: {prediction[0][2]:.2f}</p>
|
| 1513 |
+
</div>
|
| 1514 |
+
<div class="content-container7 {'highlight' if max_index == 3 else ''}">
|
| 1515 |
+
<h3>{class_labels[3]}</h3>
|
| 1516 |
+
<p>T Score: {prediction[0][3]:.2f}</p>
|
| 1517 |
+
</div>
|
| 1518 |
+
|
| 1519 |
+
|
| 1520 |
+
"""
|
| 1521 |
+
|
| 1522 |
+
# Render the content
|
| 1523 |
+
placeholder = st.empty() # Create a placeholder
|
| 1524 |
+
placeholder.markdown(loading_html, unsafe_allow_html=True)
|
| 1525 |
+
time.sleep(5) # Wait for 5 seconds
|
| 1526 |
+
placeholder.empty()
|
| 1527 |
+
st.markdown(content, unsafe_allow_html=True)
|
| 1528 |
+
else:
|
| 1529 |
+
default_image_path = "image.jpg"
|
| 1530 |
+
with open(image_path, "rb") as image_file:
|
| 1531 |
+
encoded_image = base64.b64encode(image_file.read()).decode()
|
| 1532 |
+
|
| 1533 |
+
st.markdown(
|
| 1534 |
+
f"""
|
| 1535 |
+
<div class="content-container">
|
| 1536 |
+
<!-- Title -->
|
| 1537 |
+
<!-- Recently Viewed Section -->
|
| 1538 |
+
<div class="content-container3">
|
| 1539 |
+
<img src="data:image/png;base64,{encoded_image}" alt="Default Image">
|
| 1540 |
+
</div>
|
| 1541 |
+
</div>
|
| 1542 |
+
|
| 1543 |
+
""",
|
| 1544 |
+
unsafe_allow_html=True,
|
| 1545 |
+
)
|