File size: 52,534 Bytes
93c8930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81bd8f8
93c8930
 
 
 
 
 
 
1f9ddae
 
93c8930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6227a23
93c8930
 
 
 
 
 
 
 
01a7a0f
 
93c8930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6227a23
93c8930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
import streamlit as st
st.set_page_config(layout="wide")
import streamlit.components.v1 as components
import cv2
from PIL import Image
import base64
import os
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from torch.utils.data import DataLoader
from PIL import Image
from io import BytesIO
from gradcam import GradCAM  # Import your GradCAM class
from sklearn.metrics import classification_report,confusion_matrix, roc_curve, auc,precision_recall_curve, average_precision_score
from sklearn.preprocessing import label_binarize
import seaborn as sns
import torch
import torch.nn as nn
import torchvision.models as models
from torchvision import datasets, transforms
import torchvision.transforms as transforms

import io
import warnings
warnings.filterwarnings("ignore")

showWarningOnDirectExecution = False
# Path to your logo image
logo_path = "pytorch.png"
main_bg_ext = 'png'
# Read and encode the logo image
with open(logo_path, "rb") as image_file:
    encoded_logo = base64.b64encode(image_file.read()).decode()

if "framework"  not in st.session_state:
    st.session_state.framework = "Tensorflow"
if "menu" not in st.session_state:
    st.session_state.menu = "3"
if st.session_state.menu =="1":
    st.session_state.show_summary = True
    st.session_state.show_arch = False
    st.session_state.show_desc = False
elif st.session_state.menu =="2":
    st.session_state.show_arch = True
    st.session_state.show_summary = False
    st.session_state.show_desc = False
elif st.session_state.menu =="3":
    st.session_state.show_arch = False
    st.session_state.show_summary = False
    st.session_state.show_desc = True
else:
    st.session_state.show_desc = True
def encode_image(image_path):
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode()

#**************************************************
# loading pytorch model
#********************************************


# Define the CustomVGG16 model
class CustomVGG16(nn.Module):
    def __init__(self, num_classes=2):
        super(CustomVGG16, self).__init__()
        base_model = models.vgg16(pretrained=False)  
        self.features = base_model.features
        self.avgpool = nn.AdaptiveAvgPool2d((2, 2))
        self.flatten = nn.Flatten()
        self.fc1 = nn.Linear(512 * 2 * 2, 512)
        self.bn1 = nn.BatchNorm1d(512)
        self.dropout = nn.Dropout(0.5)
        self.fc2 = nn.Linear(512, num_classes)
        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):
        x = self.features(x)
        x = self.avgpool(x)
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.bn1(x)
        x = torch.relu(x)
        x = self.dropout(x)
        x = self.fc2(x)
        x = self.softmax(x)
        return x

# Load the model
model = CustomVGG16(num_classes=2)

# Load the state_dict (weights only)
model.load_state_dict(torch.load('brain_model.pth', map_location=torch.device('cpu')))

model.eval()#model.eval()  # Set the model to evaluation mode
target_layer = model.features[-1]  # Typically last convolutional layer
gradcam = GradCAM(model, target_layer)
def preprocess_image(image):
    preprocess = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  # For pretrained models like VGG16
    ])
    return preprocess(image).unsqueeze(0)  # Add batch dimension

def generate_gradcam(image, target_class):
    # Preprocess the image and convert it to a tensor
    input_image = preprocess_image(image)
    
    # Instantiate GradCAM
    gradcam = GradCAM(model, target_layer)
    
    # Generate the CAM
    cam = gradcam.generate(input_image, target_class)
    
    return cam
# Function to get layer information
def get_layers_data(model, prefix=""):
    layers_data = []
    for name, layer in model.named_children():  # Iterate over layers
        full_name = f"{prefix}.{name}" if prefix else name  # Track hierarchy

        try:
            shape = str(list(layer.parameters())[0].shape)  # Get shape of the first param
        except Exception:
            shape = "N/A"

        param_count = sum(p.numel() for p in layer.parameters())  # Count parameters

        layers_data.append((full_name, layer.__class__.__name__, shape, f"{param_count:,}"))

        # Recursively get layers inside this layer (for nested structures)
        layers_data.extend(get_layers_data(layer, full_name))

    return layers_data

def convert_image_to_base64(pil_image):
    buffered = BytesIO()
    pil_image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()


def predict_image(image):
    # Preprocess the image to match the model input requirements
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  # Standard VGG16 normalization
    ])

    image = transform(image).unsqueeze(0)  # Add batch dimension

    # Move image to the same device as the model (GPU or CPU)
    image = image

    # Set the model to evaluation mode
    model.eval()

    with torch.no_grad():  # Disable gradient calculation
        outputs = model(image)  # Forward pass

        # Get predicted probabilities (softmax for multi-class)
    if outputs.shape[1] == 1:
            probs = torch.sigmoid(outputs)  # Apply sigmoid activation for binary classification
            prob_class_1 = probs[0].item()  # Probability for class 1
            prob_class_0 = 1 - prob_class_1  # Probability for class 0

        # If the output has two units (binary classification with softmax)
    else:
        probs = torch.nn.functional.softmax(outputs, dim=1)
        prob_class_0 = probs[0, 0].item()
        prob_class_1 = probs[0, 1].item()
        # Get the predicted class
    print("Raw model output (logits):", outputs)

    return prob_class_0, prob_class_1, probs
# /#*********************************************/
# LOADING TEST DATASET

# *************************************************
test_dir = "test"
BATCH_SIZE = 32
IMG_SIZE = (224, 224)
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
   # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

test_dataset = datasets.ImageFolder(root='test', transform=transform)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# One-hot encode labels using CategoryEncoding
class_names = test_dataset.classes
class_labels = class_names

# One-hot encode labels using CategoryEncoding
#num_classes = len(class_names)


#def one_hot_encode(image, label):
    ##label = tf.one_hot(label, num_classes)
    #return image, label


#test_dataset = test_dataset.map(one_hot_encode)


#######################################################
# Custom CSS to style the logo above the sidebar
st.markdown(
    f"""
    <style>
       /* Container for logo and text */
        .logo-text-container {{
            position: fixed;
            top: 30px; /* Adjust vertical position */
            left: 50px; /* Align with sidebar */
            display: flex;
            align-items: center;
            gap: 15px;
            justify-content: space-between;
            width: 100%;
        }}

        /* Logo styling */
        .logo-text-container img {{
            width: 100px; /* Adjust logo size */
            border-radius: 10px; /* Optional: round edges */
            margin-top:10px;
            margin-left:20px;


        }}

        /* Bold text styling */
        .logo-text-container h1 {{
            font-family: 'Times New Roman', serif;
            font-size: 24px;
            font-weight: bold;
            margin:-right 100px;;
            text-align: center;
            align-items: center;

            margin: 0 auto; /* Center the text */

            flex-grow:1;
            color: #FFD700; /* Golden color for text */
        }}
        /* Sidebar styling */
        section[data-testid="stSidebar"][aria-expanded="true"] {{
            margin-top: 100px !important; /* Space for the logo */
            border-radius: 0 60px 0px 60px !important; /* Top-left and bottom-right corners */
            width: 200px !important; /* Sidebar width */
            background:none; /* Gradient background */
           /* box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2); /* Shadow effect */
           /* border: 1px solid #FFD700; /* Shiny golden border */
            margin-bottom: 1px  !important;
            color:white !important;

        }}
       /* Style for the upload button */
        [class*="st-key-upload-btn"] {{
            position: absolute;
            top: 50%; /* Position from the top of the inner circle */
            left: 1%; /* Position horizontally at the center */
            padding: 10px 20px;
            color: red;
            border: none;
            border-radius: 20px;
            cursor: pointer;
            font-size: 35px !important;
            width:30px;
            height:20px;
        }}

        .upload-btn:hover {{
            background-color: rgba(0, 123, 255, 1);
        }}
          div[data-testid="stFileUploader"] label > div > p {{
            display:none;
            color:white !important;
        }}
        section[data-testid="stFileUploaderDropzone"] {{
          width:200px;
        height: 60px;
        background-color: white;
        border-radius: 40px;
        display: flex;
        justify-content: center;
        align-items: center;
        margin-top:-10px;
        box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.3);
        margin:20px;
        background-color: rgba(255, 255, 255, 0.7); /* Transparent blue background */
        color:white;
        }}
        div[data-testid="stFileUploaderDropzoneInstructions"] div > small{{
           color:white !important;
           display:none;
        }}
         div[data-testid="stFileUploaderDropzoneInstructions"] span{{
          margin-left:65px;
          color:orange;
        }}
        div[data-testid="stFileUploaderDropzoneInstructions"] div{{
          display:none;
        }}
       section[data-testid="stFileUploaderDropzone"] button{{
        display:none;
       }}
         div[data-testid="stMarkdownContainer"] p {{
            font-family: "Times New Roman" !important; /* Elegant font for title */
            color:white !important;
        }}
        .highlight {{
        border: 4px solid lime;
        font-weight: bold;
        background: radial-gradient(circle, rgba(0,255,0,0.3) 0%, rgba(0,0,0,0) 70%);
        box-shadow: 0px 0px 30px 10px rgba(0, 255, 0, 0.9), 
                    0px 0px 60px 20px rgba(0, 255, 0, 0.6), 
                    inset 0px 0px 15px rgba(0, 255, 0, 0.8);
        transition: all 0.3s ease-in-out;
            
        }}
        .highlight:hover {{
        transform: scale(1.05);
        background: radial-gradient(circle, rgba(0,255,0,0.6) 0%, rgba(0,0,0,0) 80%);
        box-shadow: 0px 0px 40px 15px rgba(0, 255, 0, 1), 
                    0px 0px 70px 30px rgba(0, 255, 0, 0.7), 
                    inset 0px 0px 20px rgba(0, 255, 0, 1);
    }}
         header[data-testid="stHeader"] {{
           /* border-radius: 1px !important;*/
           background: transparent !important; /* Gradient background */
            /*box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2); /* Shadow effect */
            /*: 3px solid #FFD700; /* Shiny golden border */
            /*border-bottom:none !important;*/
           margin-right: 100px !important;
            margin-top: 32px !important;
            z-index: 1 !important; /* Ensure it stays above other elements */

        }}
         div[data-testid="stDecoration"]{{
        background-image:none;
        }}
         button[data-testid="stBaseButton-secondary"]{{
        background:transparent;
        border:none;
        }}
        div[data-testid="stApp"]{{
         background:#161819;
        height: 98vh;  /* Full viewport height */
        width: 98%; 
        border-radius: 40px !important;
        margin-left:10px;
        margin-right:10px;
        margin-top:10px;
        box-shadow: 0 4px 30px rgba(0, 0, 0, 0.5);

        overflow: hidden;
        
        }}
        div[data-testid="stMarkdownContainer"] > p {{
          font-family:  "Times New Roman " !important; /* Font */
        font-size: 11px !important; /* Font size */
        margin:5px;
        }}
        
    [class*="st-key-content_"] {{

                background: rgba(255, 255, 255, 0.9);
            border-radius: 40px;
          /*  box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);*/
            width: 83.7%;
            margin-left: 75px;
           /* margin-top: -70px;*/
            margin-bottom: 10px;
            margin-right:10px;
            padding:0;

    overflow-y: auto; /* Enable vertical scrolling for the content */
           position: fixed; /* Fix the position of the container */
    top: 1.5%; /* Adjust top offset */
    left: 10%; /* Adjust left offset */
         height: 98vh;  /* Full viewport height */

        }}
        
        [class*="st-key-center-box"] {{

            background-color: transparent;
            border-radius: 60px;
            width: 100%;
           margin-top:30px;
            top:20% !important; /* Adjust top offset */
            left: 1%; /* Adjust left offset */

        }}
         [class*="st-key-side"] {{

            background-color: transparent;
            border-radius: 60px;
           box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5);
            width: 5%;
           /* margin-top: 100px;*/
            margin-bottom: 10px;
            margin-right:10px;
            padding:30px;
            display: flex;
            justify-content: center;
            
            align-items: center;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 17%; /* Adjust top offset */
            left: 16%; /* Adjust left offset */
            height:50vh;  /* Full viewport height */

        }}
           
                [class*="st-key-button_"] .stButton p > img {{
                max-width: 100%;
                vertical-align: top;
                height:130px !important;
                object-fit: cover;
                padding: 10px;
                width:250px !important;
                border-radius:10px !important;
                max-height: 2em !important;

       }}
         div.stButton > button {{                
        background: rgba(255, 255, 255, 0.2);
        color: orange !important; /* White text */
        font-family:  "Times New Roman " !important; /* Font */
        font-size: 18px !important; /* Font size */
        font-weight: bold !important; /* Bold text */
        padding: 1px 2px; /* Padding for buttons */
        border: none; /* Remove border */
        border-radius: 5px; /* Rounded corners */
        box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
        transition: all 0.3s ease-in-out; /* Smooth transition */
         display: flex;
        align-items: left;
        justify-content: left;
        margin-left:-15px ;
        width:200px;
        height:50px;
        backdrop-filter: blur(10px);
         z-index:1000;
         text-align: left;       /* Align text to the left */
        padding-left: 50px;


    }}
    div.stButton > button p{{                
        color: white !important; /* White text */

    }}
    /* Hover effect */
    div.stButton > button:hover {{
        background: rgba(255, 255, 255, 0.2);
        box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
        transform: scale(1.05); /* Slightly enlarge button */
        transform: scale(1.1); /* Slight zoom on hover */
        box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
    }}
     div.stButton > button:active {{
        background: rgba(199, 107, 26, 0.5);
        box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
       
    }}
         div.stDownloadButton > button:active,
        div.stDownloadButton  > buttonfocus {{
            background-color: transparent !important; /* or set it to the original background color */
            outline: none; /* Remove the focus outline if you want */
                }}
                [class*="st-key-button_"] .stButton p > img {{
                max-width: 100%;
                vertical-align: top;
                height:130px !important;
                object-fit: cover;
                padding: 10px;
                width:250px !important;
                border-radius:10px !important;
                max-height: 2em !important;

       }}
         div.stDownloadButton  > button > div > p {{
             font-size:15px !important;
             font-weight:bold;
         }}
        [class*="st-key-button_"] .stButton p{{
        font-family:  "Times New Roman " !important; /* Font */
        font-size:100px !important;
        height:150px !important;
        box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2);
        font-weight: bold;
        margin-top:5px;
       margin-left:5px;
       color:black;
       border-radius:10px;

       }}
        [class*="st-key-button_"]:hover {{
          
        }}

          [class*="st-key-nav-"] .stButton p{{
        font-family:  "Times New Roman " !important; /* Font */
        font-size:1rem !important;
        font-weight: bold;
     
            }}
             [class*="st-key-nav-10"]{{
            border: none; /* Remove border */
            background: transparent !important;
            backdrop-filter: blur(10px) !important;
              border-radius:80px !important;
            width:180px !important;
            height:100px; !important;
             margin-top:35px !important;
            }}
              [class*="st-key-nav-6"]{{
                  
            border: none; /* Remove border */
            background: transparent !important;
            border-radius:80px !important;
            backdrop-filter: blur(10px) !important;
             border-radius:80px !important;
            width:180px !important;
             margin-top:35px !important;

            }}
               [class*="st-key-nav-6"] {{
                  
            border: none; /* Remove border */
            background: transparent !important;
            border-radius:80px !important;
            backdrop-filter: blur(10px) !important;
             border-radius:80px !important;
            width:190px !important;
             margin-top:35px !important;

            }}
             [class*="st-key-nav-12"],[class*="st-key-blur_"]{{
                  
            border: none; /* Remove border */
            background: transparent !important;
            border-radius:80px !important;
            backdrop-filter: blur(10px) !important;
             border-radius:80px !important;
            width:180px !important;
             margin-top:35px !important;

            }}
              [class*="st-key-nav-8"]{{
                  
            border: none; /* Remove border */
            background: transparent !important;
            border-radius:80px !important;
            backdrop-filter: blur(10px) !important;
             border-radius:80px !important;
            width:300px !important;
            height:80px; !important;
            margin-top:35px !important;

            }}
            [class*="st-key-nav-5"]{{
                  
            border: none; /* Remove border */
            background: transparent !important;
            border-radius:80px !important;
            backdrop-filter: blur(10px) !important;
             border-radius:80px !important;
            width:200px !important;
            height:80px; !important;
            margin-top:35px !important;

            }}
      [class*="st-key-nav-"],[class*="st-key-blur_"] {{                
        background: rgba(255, 255, 255, 0.2);
        color: black; /* White text */
        font-family:  "Times New Roman " !important; /* Font */
        font-size: 18px !important; /* Font size */
        font-weight: bold !important; /* Bold text */
        padding: 10px 20px; /* Padding for buttons */
        border: none; /* Remove border */
        border-radius: 15px; /* Rounded corners */
        box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
        transition: all 0.3s ease-in-out; /* Smooth transition */
         display: flex;
        align-items: center;
        justify-content: center;
        margin: 10px 0;
        width:170px;
        height:60px;
        backdrop-filter: blur(10px);

    }}

    /* Hover effect */
   
      [class*="st-key-nav-"]:hover {{
        background: rgba(255, 255, 255, 0.2);
        box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
        transform: scale(1.05); /* Slightly enlarge button */
        transform: scale(1.1); /* Slight zoom on hover */
        box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
    }}
    
  
    /* Title styling */
    .title {{
   font-family: "Times New Roman" !important; /* Elegant font for title */
    font-size: 1.2rem;
    font-weight: bold;
    margin-left: 37px;
    margin-top:10px;
    margin-bottom:-100px;
    padding: 0;
    color: #333; /* Neutral color for text */
    }}


   .content-container {{
                background: rgba(255, 255, 255, 0.05);
            backdrop-filter: blur(10px); /* Adds a slight blur effect */            border-radius: 1px;
            width: 28%;
            margin-left: 150px;
           /* margin-top: -60px;*/
            margin-bottom: 10px;
            margin-right:10px;
            padding:0;
           /* border-radius:0px 0px 15px 15px ;*/
            border:1px solid transparent;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 10%; /* Adjust top offset */
            left: 60%; /* Adjust left offset */
            height: 89.5vh;  /* Full viewport height */

        }}
        .content-container-principal img{{
            margin-top:260px;
            margin-left:30px;
        }}

      
         div[data-testid="stText"] {{
              background-color: transparent;
            backdrop-filter: blur(10px); /* Adds a slight blur effect */            border-radius: 1px;
            width: 132% !important;
                        background-color: rgba(173, 216, 230, 0.1); /* Light blue with 50% transparency */

            margin-top: -36px;
            margin-bottom: 10px;
            margin-left:-220px !important;
            padding:50px;
            padding-bottom:20px;
            padding-top:50px;
           /* border-radius:0px 0px 15px 15px ;*/
            border:1px solid transparent;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            height: 85vh; !important;  /* Full viewport height */

             }}
         .content-container2 {{
            background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
            backdrop-filter: blur(10px); /* Adds a slight blur effect */            border-radius: 1px;
            width: 90%;
            margin-left: 10px;
           /* margin-top: -10px;*/
            margin-bottom: 160px;
            margin-right:10px;
            padding:0;
            border-radius:1px ;
            border:1px solid transparent;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 3%; /* Adjust top offset */
            left: 2.5%; /* Adjust left offset */
            height: 78vh;  /* Full viewport height */

        }}
        .content-container4 {{
            background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
            backdrop-filter: blur(10px); /* Adds a slight blur effect */                 width: 40%;
            margin-left: 10px;
            margin-bottom: 160px;
            margin-right:10px;
            padding:0;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 60%; /* Adjust top offset */
            left: 2.5%; /* Adjust left offset */
            height: 10vh;  /* Full viewport height */

        }}
        .content-container4 h3 ,p {{
            font-family: "Times New Roman" !important; /* Elegant font for title */
            font-size: 1rem;
            font-weight: bold;
            text-align:center;
        }}
         .content-container5 h3 ,p {{
            font-family: "Times New Roman" !important; /* Elegant font for title */
            font-size: 1rem;
            font-weight: bold;
            text-align:center;
        }}
         .content-container6 h3 ,p {{
            font-family: "Times New Roman" !important; /* Elegant font for title */
            font-size: 1rem;
            font-weight: bold;
            text-align:center;
        }}
         .content-container7 h3 ,p {{
            font-family: "Times New Roman" !important; /* Elegant font for title */
            font-size: 1rem;
            font-weight: bold;
            text-align:center;
        }}
        .content-container5 {{
    background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
            backdrop-filter: blur(10px); /* Adds a slight blur effect */                 width: 40%;
            margin-left: 180px;
            margin-bottom: 130px;
            margin-right:10px;
            padding:0;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 60%; /* Adjust top offset */
            left: 5.5%; /* Adjust left offset */
            height: 10vh;  /* Full viewport height */

        }}
      .content-container3 {{
            background-color: rgba(216, 216, 230, 0.5); /* Light blue with 50% transparency */
            backdrop-filter: blur(10px); /* Adds a slight blur effect */            border-radius: 1px;
            width: 92%;
            margin-left: 10px;
           /* margin-top: -10px;*/
            margin-bottom: 160px;
            margin-right:10px;
            padding:0;
            border: 10px solid white;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 3%; /* Adjust top offset */
            left: 1.5%; /* Adjust left offset */
            height: 40vh;  /* Full viewport height */

        }}
          .content-container6 {{
            background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
            backdrop-filter: blur(10px); /* Adds a slight blur effect */                 width: 40%;
            margin-left: 10px;
            margin-bottom: 160px;
            margin-right:10px;
            padding:0;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 80%; /* Adjust top offset */
            left: 2.5%; /* Adjust left offset */
            height: 10vh;  /* Full viewport height */

        }}
        .content-container7 {{
            background-color: rgba(0, 0, 0, 0.1); /* Light blue with 50% transparency */
            backdrop-filter: blur(10px); /* Adds a slight blur effect */                 width: 40%;
            margin-left: 180px;
            margin-bottom: 130px;
            margin-right:10px;
            padding:0;
            overflow-y: auto; /* Enable vertical scrolling for the content */
            position: fixed; /* Fix the position of the container */
            top: 80%; /* Adjust top offset */
            left: 5.5%; /* Adjust left offset */
            height: 10vh;  /* Full viewport height */

        }}
          .content-container2 img {{
              width:99%;
              height:50%;
            
              }}
          .content-container3 img {{
              width:100%;
              height:100%;
             
              }}

.side_box{{
    width: 200px;
    height: 180px; 
    background-color: #0175C2; 
    margin: 5px;
    border-radius:20px;
    left:-5%;
}}
.titles{{
      margin-top:20px !important;
      margin-left: -150px !important;

  }}
    /* Title styling */
    .titles h1{{
   /*font-family: "Times New Roman" !important; /* Elegant font for title */
    font-size: 2.2rem;
    /*font-weight: bold;*/
    margin-left: 0px;
    margin-top:80px;
    margin-bottom:30px;
    padding: 0;
    color: black; /* Neutral color for text */
    }}
 .titles > div{{
   font-family: "Times New Roman" !important; /* Elegant font for title */
    font-size: 1.2rem;
    margin-left: 200px;
    margin-bottom:1px;
    padding: 0;
    color:black; /* Neutral color for text */
    }}
    </style>
<div class="logo-text-container">
<img src="data:image/png;base64,{encoded_logo}" alt="Logo">
</div>
    """, unsafe_allow_html=True
)
loading_html = """
<style>
.loader {
  border: 8px solid #f3f3f3;
  border-top: 8px solid #0175C2; /* Blue color */
  border-radius: 50%;
  width: 50px;
  height: 50px;
  animation: spin 1s linear infinite;
  margin: auto;
}
@keyframes spin {
  0% { transform: rotate(0deg); }
  100% { transform: rotate(360deg); }
}

</style>
<div class="loader"></div>
"""
# Sidebar content
st.markdown(
    """
    <style>
        .sidebar-desc {
            font-family: "Times New Roman" !important; /* Elegant font for title */            font-size: 14px;
            color: #333;
            background-color: transparent;
            padding: 15px;
            border-radius: 20px;
            box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.1);
            width:200px !important;
            margin-left:-15px;
            margin-top:-50px;
            height:70vh;
        }
        .sidebar-desc h3 {
            font-family: "Times New Roman" !important; /* Elegant font for title */            font-size: 14px;

            font-size: 18px;
            color: #0175C2; /* Light Blue */
            margin-bottom: 10px;
        }
        .sidebar-desc h4 {
            font-size: 16px;
            color: #444;
            margin-bottom: 5px;
            font-family: "Times New Roman" !important; /* Elegant font for title */            font-size: 14px;

        }
        .sidebar-desc ul {
            list-style-type: square;
            margin: 0;
            padding-left: 20px;
        }
        .sidebar-desc ul li {
            margin-bottom: 5px;
        }
        .sidebar-desc a {
            color: #0175C2;
            text-decoration: none;
        }
        .sidebar-desc a:hover {
            text-decoration: underline;
        }
    </style>
    """,
    unsafe_allow_html=True,
)


# Use radio buttons for navigation
# Set the page to "Home"
page = "Home"
selected_img =""


st.session_state.page = "Home"
# Display content based on the selected page
if st.session_state.page == "Home":
    # Sidebar buttons
    with st.sidebar:
         if st.button("πŸ“„ Model Summary"):
            st.session_state.menu ="1"  # Store state
            st.rerun()

            # Add your model description logic here

         if st.button("πŸ“Š Model Results Analysis",key="header"):
           st.session_state.menu ="2"
           st.rerun()
            # Add model analysis logic here
         if st.button("πŸ§ͺ Model Testing"):
           st.session_state.menu ="3"
           st.rerun()
       

        
    table_style = """
        <style>
            table {
                width: 100%;
                border-collapse: collapse;
                border-radius: 2px;
                overflow: hidden;
                box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
                background: rgba(255, 255, 255, 0.05);
                backdrop-filter: blur(10px);
                font-family: "Times New Roman", serif;
                margin-left:100px;
                margin-top:30px;
            }
            thead {
                background: rgba(255, 255, 255, 0.2);
            }
            th {
                padding: 12px;
                text-align: left;
                font-weight: bold;
                backdrop-filter: blur(10px);
            }
            td {
                padding: 12px;
                border-bottom: 1px solid rgba(255, 255, 255, 0.1);
            }
            tr:hover {
                background-color: rgba(255, 255, 255, 0.1);
            }
             tbody {
                display: block;
                max-height: 680px;  /* Set the fixed height */
                overflow-y: auto;
                width: 100%;
            }
            thead, tbody tr {
                display: table;
                width: 100%;
                table-layout: fixed;
            }
        </style>
    """
    print(test_loader)

    with st.container(key="content_1"):
         print(type(model))  # Should print <class 'CustomVGG16'> and not OrderedDict
         if st.session_state.show_summary:
             # Load the model
            layers_data =  get_layers_data(model)  # Get layer information

            # Convert to HTML table
            table_html = "<table><tr><th>Layer Name</th><th>Type</th><th>Output Shape</th><th>Param #</th></tr>"
            for name, layer_type, shape, params in layers_data:
                table_html += f"<tr><td>{name}</td><td>{layer_type}</td><td>{shape}</td><td>{params}</td></tr>"
            table_html += "</table>"

           
            st.markdown(table_style + table_html, unsafe_allow_html=True)
             
         if st.session_state.show_arch:
            model.eval()

# Initialize lists to store true labels and predicted labels
            y_true = []
            y_pred = []
            for image, label in test_dataset:  # test_dataset is an instance of ImageFolder or similar
                image = image.unsqueeze(0) # Add batch dimension and move to device
                label = label
                
                with torch.no_grad():
                    output = model(image)  # Get model output
                    _, predicted = torch.max(output, 1)  # Get predicted class

                y_true.append(label)  # Append true label
                y_pred.append(predicted.item())  # Append predicted label

            # Generate the classification report
            report_dict = classification_report(y_true, y_pred, target_names=class_names, output_dict=True)

            # Convert to DataFrame for better readability
            report_df = pd.DataFrame(report_dict).transpose().round(2)

            accuracy = report_dict["accuracy"]
            precision = report_df.loc["weighted avg", "precision"]
            recall = report_df.loc["weighted avg", "recall"]
            f1_score = report_df.loc["weighted avg", "f1-score"]

         
            st.markdown("""
                <style>
                    .kpi-container {
                        display: flex;
                        justify-content: space-between;
                        margin-bottom: 20px;
                        margin-left:100px;
                        margin-top:70px;
                        
                    }
                    .kpi-card {
                        width: 23%;
                        padding: 15px;
                        text-align: center;
                        border-radius: 10px;
                        font-size: 22px;
                        font-weight: bold;
                        font-family:  "Times New Roman " !important; /* Font */
                        color: #333;
                         background: rgba(255, 255, 255, 0.05);
                        box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
                        border: 5px solid   rgba(173, 216, 230, 0.4);
                    }
                </style>
                <div class="kpi-container">
                    <div class="kpi-card">Precision<br>""" + f"{precision:.2f}" + """</div>
                    <div class="kpi-card">Recall<br>""" + f"{recall:.2f}" + """</div>
                    <div class="kpi-card">Accuracy<br>""" + f"{accuracy:.3f}" + """</div>
                    <div class="kpi-card">F1-Score<br>""" + f"{f1_score:.3f}" + """</div>
                </div>
            """, unsafe_allow_html=True)


            # Remove last rows (accuracy/macro avg/weighted avg) and reset index
            report_df = report_df.iloc[:-3].reset_index()
            report_df.rename(columns={"index": "Class"}, inplace=True)

            # Custom CSS for Table Styling
            st.markdown("""
                <style>
                    .report-container {
                        max-height: 250px;
                        overflow-y: auto;
                        border-radius: 25px;
                        text-align:center;
                        border: 5px solid   rgba(173, 216, 230, 0.4);
                        padding: 10px;
                background: rgba(255, 255, 255, 0.05);
                        box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
                        width:480px;
                        margin-left:100px;
                        margin-top:-20px;
                    }
                     .report-container h4{
                        font-family: "Times New Roman" !important; /* Elegant font for title */
                        font-size: 1rem;
                        margin-left: 5px;
                        margin-bottom:1px;
                        padding: 10px;
                        color:#333;
                        
                    }
                    .report-table {
                        width: 100%;
                        border-collapse: collapse;
                        font-family: 'Times New Roman', serif;
                        text-align: center;
                    }
                    .report-table th {
                background: rgba(255, 255, 255, 0.05);
                        font-size: 16px;
                        padding: 10px;
                        border-bottom: 2px solid #444;
                    }
                    .report-table td {
                        font-size: 12px;
                        padding: 10px;
                        border-bottom: 1px solid #ddd;
                    }
                </style>
            """, unsafe_allow_html=True)
            col1,col2 = st.columns([3,3])
            with col1:
                # Convert DataFrame to HTML Table
                report_html = report_df.to_html(index=False, classes="report-table", escape=False)
                st.markdown(f'<div class="report-container"><h4>classification report </h4>{report_html}</div>', unsafe_allow_html=True)
                            # Generate Confusion Matrix
                        # Generate Confusion Matrix
                cm = confusion_matrix(y_true, y_pred)

                # Create Confusion Matrix Heatmap
                fig, ax = plt.subplots(figsize=(1, 1))
                fig.patch.set_alpha(0)  # Make figure background transparent

                # Seaborn Heatmap (Confusion Matrix)
                sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", 
            xticklabels=class_names, yticklabels=class_names,
            linewidths=1, linecolor="black", 
            cbar=False, square=True, alpha=0.9, 
            annot_kws={"size": 5, "family": "Times New Roman"}) 
            # Change font for tick labels
                for text in ax.texts:
                    text.set_bbox(dict(facecolor='none', edgecolor='none', alpha=0))
                plt.xticks(fontsize=4,  family="Times New Roman")  # X-axis font
                plt.yticks(fontsize=4,  family="Times New Roman")  # Y-axis font
                # Enhance Labels and Title
                
                plt.title("Confusion Matrix", fontsize=5, family="Times New Roman",color="black", loc='center')

                # Apply transparent background and double border (via Streamlit Markdown)
                st.markdown("""
                    <style>
                    div[data-testid="stImageContainer"] {
                        max-height: 250px;
                        overflow-y: auto;
                        border-radius: 25px;
                        text-align:center;
                        border: 5px solid   rgba(173, 216, 230, 0.4);
                        padding: 10px;
                        background: rgba(255, 255, 255, 0.05);
                        box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
                        width:480px !important;
                        margin-left:100px;
                        margin-top:-20px;
                            
                        }
                        div[data-testid="stImageContainer"] img{
                            margin-top:-10px !important;
                            width:400px !important;
                            height:250px !important;
                        }
                        [class*="st-key-roc"] div[data-testid="stImageContainer"] {
                        max-height: 250px;
                        overflow-y: auto;
                        border-radius: 25px;
                        text-align:center;
                        border: 5px solid   rgba(173, 216, 230, 0.4);
                    background: rgba(255, 255, 255, 0.05);
                        box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
                        width:480px;
                        margin-left:-35px;
                        margin-top:-15px;
                        }
                         [class*="st-key-roc"] div[data-testid="stImageContainer"] img{
                              width:480px !important;
                            height:200px !important;
                                margin-top:-20px !important;

                             }
                        [class*="st-key-precision"] div[data-testid="stImageContainer"] {
                        max-height: 250px;
                        overflow-y: auto;
                        border-radius: 25px;
                        text-align:center;
                        border: 5px solid   rgba(173, 216, 230, 0.4);
                    background: rgba(255, 255, 255, 0.05);
                        box-shadow: 4px 4px 8px rgba(0, 0, 0, 0.4);
                        width:480px;
                        margin-left:-35px;
                        margin-top:-5px;
                        }
                         [class*="st-key-precision"] div[data-testid="stImageContainer"] img{
                              width:480px !important;
                            height:250px !important;
                                margin-top:-20px !important;

                             }
                    </style>
                """, unsafe_allow_html=True)

                # Show Plot in Streamlit inside a styled container
                st.markdown('<div class="confusion-matrix-container">', unsafe_allow_html=True)
                st.pyplot(fig)
                st.markdown("</div>", unsafe_allow_html=True)

            with col2:
                                # Convert the lists to numpy arrays
               # y_true = np.concatenate(y_true)
                y_pred_probs = np.array(y_pred)  # Make sure this is a 2D array: [batch_size, 2]
                y_true = np.array(y_true)  # Ensure y_true is a numpy array

                print(y_pred)
                print(y_true)

                # Binarize the true labels for multi-class classification
                y_true_bin = label_binarize(y_true, classes=np.arange(len(class_names)))

                # Initialize dictionaries for storing ROC curve data
               # Calculating ROC curve and AUC for each class
                fpr, tpr, roc_auc = {}, {}, {}

                # Calculate ROC curve and AUC for the positive class (class 1)
                fpr[0], tpr[0], _ = roc_curve(y_true_bin, y_pred_probs)  # Use 1D probabilities for class 1
                roc_auc[0] = auc(fpr[0], tpr[0])  # Calculate AUC for class 1

                # Plotting the ROC curve for each class
                plt.figure(figsize=(11, 9))

                # Plot ROC curve for the positive class (class 1)
                plt.plot(fpr[0], tpr[0], lw=2, label=f'Class 1 (AUC = {roc_auc[0]:.2f})')
         
                # Plot random guess line (diagonal line)
                plt.plot([0, 1], [0, 1], color='navy', lw=5, linestyle='--')

                # Labels and legend
                plt.xlim([0.0, 1.0])
                plt.ylim([0.0, 1.05])
                plt.xlabel('False Positive Rate', fontsize=28, family="Times New Roman")
                plt.ylabel('True Positive Rate', fontsize=28, family="Times New Roman")
                plt.title('ROC Curve (One-vs-Rest) for Each Class', fontsize=30, family="Times New Roman", color="black", loc='center', pad=3)
                plt.legend(loc='lower right', fontsize=18)

                # Save the plot as an image file
                plt.savefig('roc_curve.png', transparent=True)
                plt.close()

                # Display the ROC curve in Streamlit
                with st.container(key="roc"):
                    st.image('roc_curve.png')
                    
                with st.container(key="precision"):
                    # Compute Precision-Recall curve
                    precision, recall, _ = precision_recall_curve(y_true_bin, y_pred_probs)

                    # Calculate AUC for Precision-Recall curve
                    pr_auc = auc(recall, precision)

                    # Plot Precision-Recall curve
                    plt.figure(figsize=(11, 9))
                    plt.plot(recall, precision, lw=2, label=f'Precision-Recall curve (AUC = {pr_auc:.2f})')


                    plt.xlabel('Recall', fontsize=28,family="Times New Roman")
                    plt.ylabel('Precision', fontsize=28,family="Times New Roman")
                    plt.title('Precision-Recall Curve for Each Class', fontsize=30, family="Times New Roman",color="black", loc='center',pad=3)
                    plt.legend(loc='lower left', fontsize=18)
                    plt.grid(True, linestyle='--', alpha=0.7)
                    plt.savefig('precision_recall_curve.png', transparent=True)
                    plt.close()

                    st.image('precision_recall_curve.png')
         if st.session_state.show_desc:
        # components.html(html_string)  # JavaScript works
            # st.markdown(html_string, unsafe_allow_html=True)
            image_path = "new.jpg"

            st.container()
            st.markdown(
                f"""
                            
                        <div class="titles">
                            <h1>Brain Tummor Classfication</br> Using Transfer  learning</h1>
                            <div> This web application utilizes transfer learning to classify kidney ultrasound images</br>
                            into two categories: HEALTH and TUMOR  Class.
                            Built with Streamlit and powered by </br>a Pytorch transfer learning
                            model based on <strong>VGG16</strong>
                            the app provides </br>a simple and efficient way for users 
                            to upload brain scans and receive instant predictions.</br> The model analyzes the image
                            and classifies it based </br>on learned patterns, offering a confidence score for better interpretation.  
                        </div>
                            </div>
                        """,
                unsafe_allow_html=True,
            )
            uploaded_file = st.file_uploader(
                "Choose a file", type=["png", "jpg", "jpeg"], key="upload-btn"
            )
            if uploaded_file is not None:
                images = Image.open(uploaded_file)
                # Rewind file pointer to the beginning
                uploaded_file.seek(0)

                file_content = uploaded_file.read()  # Read file once
                # Convert to base64 for HTML display
                encoded_image = base64.b64encode(file_content).decode()
                # Read and process image
                pil_image = Image.open(uploaded_file).convert("RGB").resize((224, 224))
                img_array = np.array(pil_image)

                class0, class1,prediction = predict_image(images)
                max_index = int(np.argmax(prediction[0]))
                print(f"max index:{max_index}")
                max_score = prediction[0][max_index]

                predicted_class = np.argmax(prediction[0])
                print(f"predicted class is :{predicted_class}")

                cams = generate_gradcam(pil_image, predicted_class)
                heatmap = cm.jet(cams)[..., :3]
                heatmap = (heatmap * 255).astype(np.uint8)
                overlayed_image = cv2.addWeighted(img_array, 0.6, heatmap, 0.4, 0)

                # Convert to PIL
                overlayed_pil = Image.fromarray(overlayed_image)
                # Convert to base64
                orig_b64 = convert_image_to_base64(pil_image)
                overlay_b64 = convert_image_to_base64(overlayed_pil)

                highlight_class = "highlight"  # Special class for the highest confidence score

                # Generate Grad-CAM
                #cam = generate_gradcam(pil_image, predicted_class)

                # Create overlay
                #heatmap = cm.jet(cam)[..., :3]
                #heatmap = (heatmap * 255).astype(np.uint8)
                #overlayed_image = cv2.addWeighted(img_array, 0.6, heatmap, 0.4, 0)

                # Convert to PIL
                #overlayed_pil = Image.fromarray(overlayed_image)
                # Convert to base64
                orig_b64 = convert_image_to_base64(pil_image)
                #overlay_b64 = convert_image_to_base64(overlayed_pil)
                content = f"""
                    <div class="content-container">
                        <!-- Title -->
                        <!-- Recently Viewed Section -->
                        <div class="content-container3">
                    <img src="data:image/png;base64,{orig_b64}" alt="Uploaded Image">
                            </div>
                        <div class="content-container3">
                        <img src="data:image/png;base64,{overlay_b64}" class="result-image">
                        </div>
                        <div class="content-container4 {'highlight' if max_index == 0 else ''}">
                        <h3>{class_labels[0]}</h3>
                        <p>T Score: {class0  :.2f}</p>
                        </div>
                        <div class="content-container5 {'highlight' if max_index == 1 else ''}">
                        <h3> {class_labels[1]}</h3>
                        <p>T Score: {class1  :.2f}</p>
                        </div>
                """

                # Close the gallery and content div

                # Render the content
                placeholder = st.empty()  # Create a placeholder
                placeholder.markdown(loading_html, unsafe_allow_html=True)
                time.sleep(5)  # Wait for 5 seconds
                placeholder.empty()
                st.markdown(content, unsafe_allow_html=True)
            else:
                default_image_path = "new.jpg"
                with open(image_path, "rb") as image_file:
                    encoded_image = base64.b64encode(image_file.read()).decode()

                    st.markdown(
                        f"""             
                        <div class="content-container">
                        <!-- Title -->
                        <!-- Recently Viewed Section -->
                        <div class="content-container3">
                        <img src="data:image/png;base64,{encoded_image}" alt="Default Image">
                        </div>
                        </div>

                        """,
                        unsafe_allow_html=True,
                    )