Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,737 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
|
4 |
+
# Set the page layout
|
5 |
+
st.set_page_config(layout="wide")
|
6 |
+
import time
|
7 |
+
import base64
|
8 |
+
import tensorflow as tf
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import torch
|
12 |
+
import os
|
13 |
+
import torch.nn as nn
|
14 |
+
from torchvision import transforms
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
if "model" not in st.session_state:
|
18 |
+
st.session_state.model = None
|
19 |
+
if "choice" not in st.session_state:
|
20 |
+
st.session_state.choice = "tensorflow"
|
21 |
+
|
22 |
+
|
23 |
+
#import matplotlib.pyplot as plt
|
24 |
+
# Path to your logo image
|
25 |
+
logo_path = "images/logo.png"
|
26 |
+
main_bg_ext = 'png'
|
27 |
+
main_bg = 'images/download (3).jfif'
|
28 |
+
#****************************************************************
|
29 |
+
# TENSORFLOW MODEL CONFIGURATION
|
30 |
+
#****************************************************************
|
31 |
+
class_labels=[ 'Cyst', 'Normal','Stone', 'Tumor']
|
32 |
+
def load_tensorflow_model():
|
33 |
+
# Example: Load a pre-trained model (e.g., MobileNetV2)
|
34 |
+
tf_model = tf.keras.models.load_model('model/best_model.keras')
|
35 |
+
return tf_model
|
36 |
+
def predict_image(image):
|
37 |
+
time.sleep(2)
|
38 |
+
image = image.resize((64, 64))
|
39 |
+
image = np.array(image) / 255.0
|
40 |
+
image = np.expand_dims(image, axis=0)
|
41 |
+
predictions = st.session_state.model.predict(image)
|
42 |
+
return predictions
|
43 |
+
#****************************************************************
|
44 |
+
# PYTORCH MODEL CONFIGURATION
|
45 |
+
#****************************************************************
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
class CNNModel(nn.Module):
|
50 |
+
def __init__(self, input_channels=3, num_classes=4):
|
51 |
+
super(CNNModel, self).__init__()
|
52 |
+
|
53 |
+
self.conv1 = nn.Conv2d(input_channels, 32, kernel_size=3, padding=1)
|
54 |
+
self.bn1 = nn.BatchNorm2d(32)
|
55 |
+
self.pool1 = nn.MaxPool2d(2, 2)
|
56 |
+
|
57 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
58 |
+
self.bn2 = nn.BatchNorm2d(64)
|
59 |
+
self.pool2 = nn.MaxPool2d(2, 2)
|
60 |
+
|
61 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
62 |
+
self.bn3 = nn.BatchNorm2d(128)
|
63 |
+
self.pool3 = nn.MaxPool2d(2, 2)
|
64 |
+
|
65 |
+
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
|
66 |
+
self.bn4 = nn.BatchNorm2d(256)
|
67 |
+
self.pool4 = nn.MaxPool2d(2, 2)
|
68 |
+
|
69 |
+
self.flatten = nn.Flatten()
|
70 |
+
|
71 |
+
self.fc1 = nn.Linear(256 * 4 * 4, 512)
|
72 |
+
self.dropout1 = nn.Dropout(0.4)
|
73 |
+
|
74 |
+
self.fc2 = nn.Linear(512, 256)
|
75 |
+
self.dropout2 = nn.Dropout(0.3)
|
76 |
+
|
77 |
+
self.fc3 = nn.Linear(256, num_classes)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = self.pool1(torch.relu(self.bn1(self.conv1(x))))
|
81 |
+
x = self.pool2(torch.relu(self.bn2(self.conv2(x))))
|
82 |
+
x = self.pool3(torch.relu(self.bn3(self.conv3(x))))
|
83 |
+
x = self.pool4(torch.relu(self.bn4(self.conv4(x))))
|
84 |
+
|
85 |
+
x = self.flatten(x)
|
86 |
+
x = self.dropout1(torch.relu(self.fc1(x)))
|
87 |
+
x = self.dropout2(torch.relu(self.fc2(x)))
|
88 |
+
x = self.fc3(x)
|
89 |
+
|
90 |
+
return x
|
91 |
+
|
92 |
+
#*************************************************************
|
93 |
+
def predict_with_pytorch(image):
|
94 |
+
# Defining the preprocessing pipeline
|
95 |
+
preprocess = transforms.Compose([
|
96 |
+
transforms.Resize((64, 64)),
|
97 |
+
transforms.ToTensor(),
|
98 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
99 |
+
])
|
100 |
+
|
101 |
+
# Applying preprocessing transformations
|
102 |
+
image = preprocess(image).unsqueeze(0)
|
103 |
+
|
104 |
+
# Check if the image has the correct shape
|
105 |
+
print(f"Image shape after preprocessing: {image.shape}")
|
106 |
+
|
107 |
+
with torch.no_grad():
|
108 |
+
output = st.session_state.model(image)
|
109 |
+
|
110 |
+
probabilities = F.softmax(output, dim=1)
|
111 |
+
|
112 |
+
class_probabilities = probabilities.squeeze().tolist()
|
113 |
+
predicted_classes = torch.argsort(probabilities, dim=1, descending=True) #
|
114 |
+
|
115 |
+
# Return all classes and their probabilities
|
116 |
+
result_dict = {}
|
117 |
+
for idx, prob in zip(predicted_classes[0], class_probabilities):
|
118 |
+
result_dict[idx.item()] = prob
|
119 |
+
|
120 |
+
return result_dict
|
121 |
+
|
122 |
+
|
123 |
+
#**********************************************************
|
124 |
+
|
125 |
+
def load_pytorch_model():
|
126 |
+
# Example: Load a pre-trained model (e.g., ResNet18)
|
127 |
+
model = torch.load('model/torch_model.pth', map_location=torch.device('cpu')) # Forces the model to load on CPU
|
128 |
+
|
129 |
+
model.eval()
|
130 |
+
return model
|
131 |
+
#****************************************************************
|
132 |
+
# PYTORCH MODEL CONFIGURATION
|
133 |
+
#****************************************************************
|
134 |
+
|
135 |
+
# Read and encode the logo image
|
136 |
+
with open(logo_path, "rb") as image_file:
|
137 |
+
encoded_logo = base64.b64encode(image_file.read()).decode()
|
138 |
+
|
139 |
+
# Custom CSS to style the logo above the sidebar and other elements
|
140 |
+
st.markdown(
|
141 |
+
f"""
|
142 |
+
<style>
|
143 |
+
/* Container for logo and text */
|
144 |
+
.logo-text-container {{
|
145 |
+
position: fixed;
|
146 |
+
top: 30px; /* Adjust vertical position */
|
147 |
+
left: 50px; /* Align with sidebar */
|
148 |
+
display: flex;
|
149 |
+
align-items: center;
|
150 |
+
gap: 15px;
|
151 |
+
justify-content: space-between;
|
152 |
+
width: 100%;
|
153 |
+
}}
|
154 |
+
|
155 |
+
/* Logo styling */
|
156 |
+
.logo-text-container img {{
|
157 |
+
width: 130px; /* Adjust logo size */
|
158 |
+
border-radius: 10px; /* Optional: round edges */
|
159 |
+
margin-top: 10px;
|
160 |
+
margin-left: 20px;
|
161 |
+
}}
|
162 |
+
|
163 |
+
/* Bold text styling */
|
164 |
+
.logo-text-container h1 {{
|
165 |
+
font-family: 'Times New Roman', serif;
|
166 |
+
font-size: 24px;
|
167 |
+
font-weight: bold;
|
168 |
+
text-align: center;
|
169 |
+
color: #FFD700; /* Golden color for text */
|
170 |
+
}}
|
171 |
+
|
172 |
+
/* Sidebar styling */
|
173 |
+
section[data-testid="stSidebar"][aria-expanded="true"] {{
|
174 |
+
margin-top: 100px !important; /* Space for the logo */
|
175 |
+
border-radius: 0 60px 0px 60px !important; /* Top-left and bottom-right corners */
|
176 |
+
width: 200px !important; /* Sidebar width */
|
177 |
+
background: none; /* No background */
|
178 |
+
color: white !important;
|
179 |
+
}}
|
180 |
+
|
181 |
+
header[data-testid="stHeader"] {{
|
182 |
+
background: transparent !important;
|
183 |
+
margin-right: 100px !important;
|
184 |
+
margin-top: 1px !important;
|
185 |
+
z-index: 1 !important;
|
186 |
+
|
187 |
+
color: blue; /* White text */
|
188 |
+
font-family: "Times New Roman " !important; /* Font */
|
189 |
+
font-size: 18px !important; /* Font size */
|
190 |
+
font-weight: bold !important; /* Bold text */
|
191 |
+
padding: 10px 20px; /* Padding for buttons */
|
192 |
+
border: none; /* Remove border */
|
193 |
+
border-radius: 35px; /* Rounded corners */
|
194 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
195 |
+
transition: all 0.3s ease-in-out; /* Smooth transition */
|
196 |
+
display: flex;
|
197 |
+
align-items: center;
|
198 |
+
justify-content: center;
|
199 |
+
margin: 10px 0;
|
200 |
+
width:90%;
|
201 |
+
left:5.5%;
|
202 |
+
height:60px;
|
203 |
+
margin-top:70px;
|
204 |
+
backdrop-filter: blur(10px);
|
205 |
+
border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */
|
206 |
+
|
207 |
+
}}
|
208 |
+
|
209 |
+
div[data-testid="stDecoration"] {{
|
210 |
+
background-image: none;
|
211 |
+
}}
|
212 |
+
|
213 |
+
div[data-testid="stApp"] {{
|
214 |
+
background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
|
215 |
+
background-size: cover; /* Ensure the image covers the full page */
|
216 |
+
background-position: center;
|
217 |
+
height: 98vh;
|
218 |
+
width: 98%;
|
219 |
+
border-radius: 20px !important;
|
220 |
+
margin-left: 10px;
|
221 |
+
margin-right: 10px;
|
222 |
+
margin-top: 10px;
|
223 |
+
overflow: hidden;
|
224 |
+
backdrop-filter: blur(10px); /* Glass effect */
|
225 |
+
-webkit-backdrop-filter: blur(10px);
|
226 |
+
border: 1px solid rgba(255, 255, 255, 0.2); /* Light border */
|
227 |
+
|
228 |
+
}}
|
229 |
+
|
230 |
+
div[data-testid="stSidebarNav"] {{
|
231 |
+
display: none;
|
232 |
+
}}
|
233 |
+
|
234 |
+
/* Styling for the content container */
|
235 |
+
[class*="st-key-content-container-1"] {{
|
236 |
+
|
237 |
+
background: rgba(255, 255, 255, 0.5); /* Semi-transparent white background */
|
238 |
+
border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */
|
239 |
+
|
240 |
+
backdrop-filter: blur(10px); /* Apply blur effect */
|
241 |
+
-webkit-backdrop-filter: blur(10px); /* For Safari compatibility */
|
242 |
+
border-radius: 20px;
|
243 |
+
padding: 20px;
|
244 |
+
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); /* Subtle shadow for depth */
|
245 |
+
width: 98%; /* Make it span across most of the screen */
|
246 |
+
margin-left: 0.5%;
|
247 |
+
margin-right: 0.5%;
|
248 |
+
height: 92.5vh; /* Adjust to fill most of the screen */
|
249 |
+
overflow-y: auto; /* Enable vertical scrolling */
|
250 |
+
position: fixed; /* Keep the container fixed on the screen */
|
251 |
+
top: 3.5%; /* Adjust top margin */
|
252 |
+
left: 0.5%; /* Adjust left margin */
|
253 |
+
z-index: 0; /* Keep behind sidebar and header */
|
254 |
+
margin-bottom:2%;
|
255 |
+
|
256 |
+
}}
|
257 |
+
[class*="st-key-content-container-3"] {{
|
258 |
+
|
259 |
+
width: 28%; /* Make it span across most of the screen */
|
260 |
+
position:fixed;
|
261 |
+
top: -0.9%; /* Adjust top margin */
|
262 |
+
left: 11%; /* Adjust left margin */
|
263 |
+
z-index: 1; /* Keep behind sidebar and header */
|
264 |
+
padding-left:20px;
|
265 |
+
align-item:center;
|
266 |
+
border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */
|
267 |
+
background: transparent !important;
|
268 |
+
margin-right: 100px !important;
|
269 |
+
border-right: 2px solid rgba(255, 255, 155, 0.4); /* Light border */
|
270 |
+
|
271 |
+
z-index: 1 !important;
|
272 |
+
|
273 |
+
color: blue; /* White text */
|
274 |
+
font-family: "Times New Roman " !important; /* Font */
|
275 |
+
font-size: 18px !important; /* Font size */
|
276 |
+
font-weight: bold !important; /* Bold text */
|
277 |
+
padding: 10px 20px; /* Padding for buttons */
|
278 |
+
border: none; /* Remove border */
|
279 |
+
border-radius: 35px; /* Rounded corners */
|
280 |
+
transition: all 0.3s ease-in-out; /* Smooth transition */
|
281 |
+
display: flex;
|
282 |
+
align-items: center;
|
283 |
+
justify-content: center;
|
284 |
+
margin: 10px 0;
|
285 |
+
|
286 |
+
height:60px;
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
}}
|
292 |
+
/* Styling for the content container */
|
293 |
+
[class*="st-key-content-container-2"] {{
|
294 |
+
background-color: transparent; /* Transparent background */
|
295 |
+
border-radius: 20px;
|
296 |
+
padding: 20px;
|
297 |
+
width: 50%; /* Make it span across most of the screen */
|
298 |
+
|
299 |
+
height: 85vh; /* Adjust to fill most of the screen */
|
300 |
+
overflow-y: auto; /* Enable vertical scrolling */
|
301 |
+
position: fixed; /* Keep the container fixed on the screen */
|
302 |
+
top: 7%; /* Adjust top margin */
|
303 |
+
left: 49.5%; /* Adjust left margin */
|
304 |
+
right:2%;
|
305 |
+
border-left: 3px solid rgba(255, 255, 155, 0.9); /* Light border */
|
306 |
+
|
307 |
+
}}
|
308 |
+
|
309 |
+
/* Button row styling */
|
310 |
+
.button-row {{
|
311 |
+
display: flex;
|
312 |
+
justify-content: flex-start;
|
313 |
+
gap: 20px;
|
314 |
+
margin-bottom: 20px;
|
315 |
+
}}
|
316 |
+
|
317 |
+
.custom-button {{
|
318 |
+
width: 100px;
|
319 |
+
height: 40px;
|
320 |
+
border-radius: 10px;
|
321 |
+
background-color: #007BFF;
|
322 |
+
color: white;
|
323 |
+
border: none;
|
324 |
+
cursor: pointer;
|
325 |
+
font-size: 16px;
|
326 |
+
}}
|
327 |
+
|
328 |
+
.custom-button:hover {{
|
329 |
+
background-color: #0056b3;
|
330 |
+
}}
|
331 |
+
div.stButton > button {{
|
332 |
+
background: rgba(255, 255, 255, 0.2);
|
333 |
+
color: blue; /* White text */
|
334 |
+
font-family: "Times New Roman " !important; /* Font */
|
335 |
+
font-size: 18px !important; /* Font size */
|
336 |
+
font-weight: bold !important; /* Bold text */
|
337 |
+
padding: 10px 20px; /* Padding for buttons */
|
338 |
+
border: none; /* Remove border */
|
339 |
+
border-radius: 35px; /* Rounded corners */
|
340 |
+
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
|
341 |
+
transition: all 0.3s ease-in-out; /* Smooth transition */
|
342 |
+
display: flex;
|
343 |
+
align-items: center;
|
344 |
+
justify-content: center;
|
345 |
+
margin: 10px 0;
|
346 |
+
width:160px;
|
347 |
+
height:50px;
|
348 |
+
margin-top:5px;
|
349 |
+
|
350 |
+
}}
|
351 |
+
|
352 |
+
/* Hover effect */
|
353 |
+
div.stButton > button:hover {{
|
354 |
+
background: rgba(255, 255, 255, 0.2);
|
355 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
|
356 |
+
transform: scale(1.05); /* Slightly enlarge button */
|
357 |
+
transform: scale(1.1); /* Slight zoom on hover */
|
358 |
+
box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
|
359 |
+
}}
|
360 |
+
/* Outer large circle with transparent background */
|
361 |
+
.outer-circle {{
|
362 |
+
width: 350px;
|
363 |
+
height: 350px;
|
364 |
+
border-radius: 40%; /* Circular shape */
|
365 |
+
background-color: transparent; /* Transparent background */
|
366 |
+
border: 1px solid white; /* Golden border */
|
367 |
+
display: flex;
|
368 |
+
justify-content: center;
|
369 |
+
align-items: center;
|
370 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); /* Shadow for depth */
|
371 |
+
}}
|
372 |
+
|
373 |
+
/* Inner smaller circle with light grey background */
|
374 |
+
.inner-circle {{
|
375 |
+
width: 330px;
|
376 |
+
height: 330px;
|
377 |
+
backdrop-filter: blur(10px);
|
378 |
+
background: rgba(255, 255, 255, 0.2);
|
379 |
+
|
380 |
+
border-radius: 40%; /* Circular shape */
|
381 |
+
display: flex;
|
382 |
+
justify-content: center;
|
383 |
+
align-items: center;
|
384 |
+
overflow: hidden; /* Ensure image is contained within the circle */
|
385 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.4); /* Shadow for depth */
|
386 |
+
border: 1px solid white; /* Golden border */
|
387 |
+
|
388 |
+
}}
|
389 |
+
|
390 |
+
/* Style for the image to fit within the inner circle */
|
391 |
+
.inner-circle img {{
|
392 |
+
width: 100%;
|
393 |
+
height: 100%;
|
394 |
+
object-fit: cover; /* Ensure the image covers the circular area */
|
395 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); /* Shadow for depth */
|
396 |
+
|
397 |
+
}}
|
398 |
+
/* Style for the upload button */
|
399 |
+
[class*="st-key-upload-btn"] {{
|
400 |
+
position: absolute;
|
401 |
+
top: 50%; /* Position from the top of the inner circle */
|
402 |
+
left: 5%; /* Position horizontally at the center */
|
403 |
+
transform: translateX(-40%); /* Adjust to ensure it's centered */
|
404 |
+
padding: 10px 20px;
|
405 |
+
color: black;
|
406 |
+
border: none;
|
407 |
+
border-radius: 20px;
|
408 |
+
cursor: pointer;
|
409 |
+
font-size: 23px;
|
410 |
+
with:300px;
|
411 |
+
height:100px;
|
412 |
+
z-index:1000;
|
413 |
+
}}
|
414 |
+
|
415 |
+
.upload-btn:hover {{
|
416 |
+
background-color: rgba(0, 123, 255, 1);
|
417 |
+
}}
|
418 |
+
div[data-testid="stFileUploader"] label > div > p {{
|
419 |
+
display:none;
|
420 |
+
color:white !important;
|
421 |
+
}}
|
422 |
+
section[data-testid="stFileUploaderDropzone"] {{
|
423 |
+
width:190px;
|
424 |
+
height: 120px;
|
425 |
+
background-color: white;
|
426 |
+
border-radius: 40px;
|
427 |
+
display: flex;
|
428 |
+
justify-content: center;
|
429 |
+
align-items: center;
|
430 |
+
margin-top:-10px;
|
431 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.3);
|
432 |
+
margin:20px;
|
433 |
+
background-color: rgba(255, 255, 255, 0.7); /* Transparent blue background */
|
434 |
+
color:white;
|
435 |
+
}}
|
436 |
+
div[data-testid="stFileUploaderDropzoneInstructions"] div > small{{
|
437 |
+
color:white !important;
|
438 |
+
display:none;
|
439 |
+
}}
|
440 |
+
div[data-testid="stFileUploaderDropzoneInstructions"] span{{
|
441 |
+
margin-left:60px;
|
442 |
+
}}
|
443 |
+
div[data-testid="stFileUploaderDropzoneInstructions"] div{{
|
444 |
+
display:none;
|
445 |
+
}}
|
446 |
+
section[data-testid="stFileUploaderDropzone"] button{{
|
447 |
+
display:none;
|
448 |
+
}}
|
449 |
+
div[data-testid="stMarkdownContainer"] p {{
|
450 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
451 |
+
color:white !important;
|
452 |
+
}}
|
453 |
+
.title {{
|
454 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
455 |
+
font-size: 1.rem;
|
456 |
+
font-weight: bold;
|
457 |
+
margin-left: 37px;
|
458 |
+
margin-top:10px;
|
459 |
+
margin-bottom:-100px;
|
460 |
+
padding: 0;
|
461 |
+
color: #333; /* Neutral color for text */
|
462 |
+
}}
|
463 |
+
|
464 |
+
</style>
|
465 |
+
|
466 |
+
""",
|
467 |
+
unsafe_allow_html=True,
|
468 |
+
)
|
469 |
+
st.markdown(
|
470 |
+
"""
|
471 |
+
<style>
|
472 |
+
/* Outer container to define the grid */
|
473 |
+
.grid-container {
|
474 |
+
display: grid;
|
475 |
+
grid-template-columns: repeat(2 1fr); /* 2 columns */
|
476 |
+
grid-template-rows: repeat(2, 1fr); /* 2 rows */
|
477 |
+
gap: 20px; /* Space between containers */
|
478 |
+
width: 90%;
|
479 |
+
height: 5vh;
|
480 |
+
align-items: center;
|
481 |
+
}
|
482 |
+
|
483 |
+
/* Individual grid items (containers) */
|
484 |
+
.grid-item {
|
485 |
+
padding: 20px;
|
486 |
+
border-radius: 10px;
|
487 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
488 |
+
display: flex;
|
489 |
+
justify-content: left;
|
490 |
+
align-items: center;
|
491 |
+
text-align: left;
|
492 |
+
background: rgba(0, 0, 0, 0.2); /* Semi-transparent white background */
|
493 |
+
|
494 |
+
border-radius: 20px;
|
495 |
+
padding: 20px;
|
496 |
+
width: 80%; /* Make it span across most of the screen */
|
497 |
+
margin-left: 0.5%;
|
498 |
+
margin-right: 0.5%;
|
499 |
+
}
|
500 |
+
|
501 |
+
/* Optional styling for the subheader and content */
|
502 |
+
.grid-item h3 {
|
503 |
+
margin: 0;
|
504 |
+
color: #333;
|
505 |
+
font-size:18px;
|
506 |
+
width:100px;
|
507 |
+
font-family: "Times New Roman" !important; /* Elegant font for title */
|
508 |
+
font-size: 1.rem;
|
509 |
+
font-weight: bold;
|
510 |
+
}
|
511 |
+
|
512 |
+
.grid-item p {
|
513 |
+
color: #555;
|
514 |
+
}
|
515 |
+
.title-container {
|
516 |
+
display: flex;
|
517 |
+
align-items: center; /* Vertically center the title and the image */
|
518 |
+
}
|
519 |
+
.title-container img {
|
520 |
+
width: 40px; /* Adjust the size of the image */
|
521 |
+
height: 40px; /* Adjust the size of the image */
|
522 |
+
margin-right: 10px; /* Space between the image and the title */
|
523 |
+
}
|
524 |
+
.title {
|
525 |
+
font-size: 20px;
|
526 |
+
font-weight: bold;
|
527 |
+
}
|
528 |
+
</style>
|
529 |
+
""", unsafe_allow_html=True
|
530 |
+
)
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
|
535 |
+
|
536 |
+
|
537 |
+
# Create the main content area
|
538 |
+
with st.container(key="content-container-3"):
|
539 |
+
col1,_, col2 = st.columns([2,4, 2])
|
540 |
+
with col1:
|
541 |
+
if st.button(" Tensorflow"):
|
542 |
+
st.session_state.model = load_tensorflow_model()
|
543 |
+
st.session_state.choice = "tensorflow"
|
544 |
+
with col2:
|
545 |
+
if st.button(" Pytorch"):
|
546 |
+
st.session_state.model = load_pytorch_model()
|
547 |
+
st.session_state.choice = "pytorch"
|
548 |
+
with st.container(key="content-container-1"):
|
549 |
+
|
550 |
+
image_path = "images/t.jpg"
|
551 |
+
col1, col2 = st.columns([1, 9])
|
552 |
+
with col1:
|
553 |
+
st.write("")
|
554 |
+
|
555 |
+
with col2:
|
556 |
+
st.write("")
|
557 |
+
if st.session_state.choice == "tensorflow":
|
558 |
+
st.markdown(f""" <div class="title-container">
|
559 |
+
<img src="data:image/png;base64,{base64.b64encode(open("images/tensorflow.png","rb").read()).decode()}" alt="Uploaded Image">
|
560 |
+
<h2 class="title">Tensorflow Model Information</h2></div>""", unsafe_allow_html=True)
|
561 |
+
st.write("This is a Convolutional Neural Network (CNN) model trained on image data.")
|
562 |
+
st.write(f"Input Shape: (64, 64, 3)")
|
563 |
+
st.write(f"Output Classes: {4} classes")
|
564 |
+
else :
|
565 |
+
st.markdown(f""" <div class="title-container">
|
566 |
+
<img src="data:image/png;base64,{base64.b64encode(open("images/pytorch.png","rb").read()).decode()}" alt="Uploaded Image">
|
567 |
+
<h2 class="title">Pytorch Model Information</h2></div>""", unsafe_allow_html=True)
|
568 |
+
st.write("This is a Convolutional Neural Network (CNN) model trained on image data.")
|
569 |
+
st.write(f"Input Shape: (64, 64, 3)")
|
570 |
+
st.write(f"Output Classes: {4} classes")
|
571 |
+
|
572 |
+
col3, col4 = st.columns([3, 7])
|
573 |
+
with col3:
|
574 |
+
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg", "jpeg"],key="upload-btn")
|
575 |
+
if uploaded_file is not None:
|
576 |
+
|
577 |
+
|
578 |
+
with open(image_path, "rb") as image_file:
|
579 |
+
encoded_image = base64.b64encode(image_file.read()).decode()
|
580 |
+
|
581 |
+
# Display the circular container with the image inside
|
582 |
+
st.markdown(
|
583 |
+
f"""
|
584 |
+
<div class="outer-circle">
|
585 |
+
<div class="inner-circle">
|
586 |
+
<img src="data:image/png;base64,{base64.b64encode(uploaded_file.read()).decode()}" alt="Uploaded Image">
|
587 |
+
|
588 |
+
</div>
|
589 |
+
|
590 |
+
</div>
|
591 |
+
""",
|
592 |
+
unsafe_allow_html=True,
|
593 |
+
)
|
594 |
+
else:
|
595 |
+
default_image_path = "images/t.jpg"
|
596 |
+
with open(default_image_path, "rb") as image_file:
|
597 |
+
encoded_image = base64.b64encode(image_file.read()).decode()
|
598 |
+
|
599 |
+
|
600 |
+
# Display the circular container with the image inside
|
601 |
+
st.markdown(
|
602 |
+
f"""
|
603 |
+
<div class="outer-circle">
|
604 |
+
<div class="inner-circle">
|
605 |
+
<img src="data:image/png;base64,{encoded_image}" alt="Default Image">
|
606 |
+
|
607 |
+
</div>
|
608 |
+
|
609 |
+
</div>
|
610 |
+
""",
|
611 |
+
unsafe_allow_html=True,
|
612 |
+
)
|
613 |
+
|
614 |
+
with col4:
|
615 |
+
with st.container(key="content-container-2"):
|
616 |
+
if uploaded_file != None:
|
617 |
+
images = Image.open(uploaded_file)
|
618 |
+
|
619 |
+
with st.spinner("Processing the image..."):
|
620 |
+
|
621 |
+
progress_bar = st.progress(0)
|
622 |
+
for i in range(1, 11):
|
623 |
+
|
624 |
+
time.sleep(0.6) # Simulated delay for each progress increment
|
625 |
+
progress_bar.progress(i * 10)
|
626 |
+
|
627 |
+
|
628 |
+
if st.session_state.choice == "tensorflow":
|
629 |
+
prediction = predict_image(images)
|
630 |
+
max_index = int(np.argmax(prediction[0]))
|
631 |
+
max_score = prediction[0][max_index]
|
632 |
+
descriptive_message = ""
|
633 |
+
if max_index == 0:
|
634 |
+
descriptive_message = f"""
|
635 |
+
This image is likely to represent a <b>{class_labels[max_index]} kideney</b> ,which is an indication of healthy tissue with no signs of abnormal growth.
|
636 |
+
We recommend maintaining a healthy lifestyle and continuing regular health check-ups to ensure the body remains in a natural, healthy state.
|
637 |
+
"""
|
638 |
+
elif max_index == 1:
|
639 |
+
descriptive_message = f"""
|
640 |
+
This image is likely to represent a <b>{class_labels[max_index]} kideney</b>, which is a fluid-filled sac that forms in various body parts.
|
641 |
+
Cysts are typically benign and may not require treatment unless they grow large or become infected. We recommend monitoring the cyst and consulting a healthcare provider if you notice any changes.
|
642 |
+
"""
|
643 |
+
elif max_index == 2:
|
644 |
+
descriptive_message = f"""
|
645 |
+
This image is likely to represent a <b>{class_labels[max_index]} kideney</b>, which is a solid mass that forms in organs like the kidneys or bladder due to crystallization of minerals or salts.
|
646 |
+
Stones can be painful, and treatment may include passing them naturally or removing them surgically. We recommend staying hydrated and avoiding excessive salt intake to prevent stones from forming.
|
647 |
+
"""
|
648 |
+
else:
|
649 |
+
descriptive_message = f"""
|
650 |
+
This image is likely to represent a <b>{class_labels[max_index]} kideney</b>, which is an abnormal growth of tissue. Tumors can be benign or malignant, and further testing is required to determine the exact nature.
|
651 |
+
We recommend consulting a healthcare provider for further investigation and treatment if necessary.
|
652 |
+
"""
|
653 |
+
|
654 |
+
if prediction is not None and len(prediction) > 0: # Check if prediction is valid
|
655 |
+
divs = f"""
|
656 |
+
<div class="grid-container">
|
657 |
+
<div class="grid-item">
|
658 |
+
<h3>{class_labels[0]}</h3>
|
659 |
+
<p>T Score: {prediction[0][0]:.2f}</p>
|
660 |
+
</div>
|
661 |
+
<div class="grid-item">
|
662 |
+
<h3> {class_labels[1]}</h3>
|
663 |
+
<p>T Score: {prediction[0][1]:.2f}</p>
|
664 |
+
</div>
|
665 |
+
<div class="grid-item">
|
666 |
+
<h3> {class_labels[2]}</h3>
|
667 |
+
<p>T Score: {prediction[0][2]:.2f}</p>
|
668 |
+
</div>
|
669 |
+
<div class="grid-item">
|
670 |
+
<h3>{class_labels[3]}</h3>
|
671 |
+
<p>T Score: {prediction[0][3]:.2f}</p>
|
672 |
+
</div>
|
673 |
+
<h2 class = "title">Prediction: {class_labels[max_index]} with confidence {prediction[0][max_index]:.2f}</h2>
|
674 |
+
<p>{descriptive_message}</p>
|
675 |
+
</div>
|
676 |
+
"""
|
677 |
+
|
678 |
+
st.markdown(divs, unsafe_allow_html=True)
|
679 |
+
|
680 |
+
else :
|
681 |
+
predictions = predict_with_pytorch(images)
|
682 |
+
predictiont =list( predictions.keys())
|
683 |
+
|
684 |
+
predicted_index = max(predictions, key=predictions.get)
|
685 |
+
print(f"classe {predictions}")
|
686 |
+
print(f"classes {predicted_index}")
|
687 |
+
descriptive_message = ""
|
688 |
+
if predicted_index == 0:
|
689 |
+
descriptive_message = f"""
|
690 |
+
This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is an indication of healthy tissue with no signs of abnormal growth.
|
691 |
+
We recommend maintaining a healthy lifestyle and continuing regular health check-ups to ensure the body remains in a natural, healthy state.
|
692 |
+
"""
|
693 |
+
elif predicted_index == 1:
|
694 |
+
descriptive_message = f"""
|
695 |
+
This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is a fluid-filled sac that forms in various body parts.
|
696 |
+
Cysts are typically benign and may not require treatment unless they grow large or become infected. We recommend monitoring the cyst and consulting a healthcare provider if you notice any changes.
|
697 |
+
"""
|
698 |
+
elif predicted_index == 2:
|
699 |
+
descriptive_message = f"""
|
700 |
+
This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is a solid mass that forms in organs like the kidneys or bladder due to crystallization of minerals or salts.
|
701 |
+
Stones can be painful, and treatment may include passing them naturally or removing them surgically. We recommend staying hydrated and avoiding excessive salt intake to prevent stones from forming.
|
702 |
+
"""
|
703 |
+
else:
|
704 |
+
descriptive_message = f"""
|
705 |
+
This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is an abnormal growth of tissue. Tumors can be benign or malignant, and further testing is required to determine the exact nature.
|
706 |
+
We recommend consulting a healthcare provider for further investigation and treatment if necessary.
|
707 |
+
"""
|
708 |
+
|
709 |
+
# Once preprocessing is done, show the content (grid in your case)
|
710 |
+
if predictiont:
|
711 |
+
st.markdown(f"""
|
712 |
+
<div class="grid-container">
|
713 |
+
<div class="grid-item">
|
714 |
+
<h3>{class_labels[predictiont[0]]} </h3>
|
715 |
+
<p>T Score: {predictions[predictiont[0]]:.2f}</p>
|
716 |
+
</div>
|
717 |
+
<div class="grid-item">
|
718 |
+
<h3>{class_labels[predictiont[1]]} </h3>
|
719 |
+
<p>T Score: {predictions[predictiont[1]]:.2f}</p>
|
720 |
+
</div>
|
721 |
+
<div class="grid-item">
|
722 |
+
<h3> {class_labels[predictiont[2]]} </h3>
|
723 |
+
<p>T Score: {predictions[predictiont[2]]:.2f}</p>
|
724 |
+
</div>
|
725 |
+
<div class="grid-item">
|
726 |
+
<h3>{class_labels[predictiont[3]]} </h3>
|
727 |
+
<p>T Score: {predictions[predictiont[3]]:.2f}</p>
|
728 |
+
</div>
|
729 |
+
<h2 class = "title">Prediction: {class_labels[predicted_index]} with confidence {predictions[predicted_index]:.2f}</h2>
|
730 |
+
<p>{descriptive_message}</p>
|
731 |
+
</div>
|
732 |
+
""", unsafe_allow_html=True
|
733 |
+
)
|
734 |
+
|
735 |
+
|
736 |
+
|
737 |
+
|