import time import plotly.express as px import pandas as pd import numpy as np import streamlit as st df = pd.read_csv('bank.csv') st.set_page_config(page_title="Bank Data", page_icon="", layout="wide") st.title("Bank Data Analysis") job_filter = st.selectbox('Select Job', pd.unique(df['job'])) df_filtered = df[df['job'] == job_filter] avg_age = np.mean(df_filtered['age']) count_married = int(df_filtered['marital'].value_counts()['married']) kp1, kp2, kp3 = st.columns(3) kp1.metric(label="Average Age", value=round(avg_age), delta=round(avg_age) - 10) kp2.metric(label="Married Count", value=count_married, delta=None) st.subheader("Age vs Marital Status") fig = px.density_heatmap(df_filtered, x="age", y="marital", nbinsx=20, nbinsy=5, color_continuous_scale="Blues") st.plotly_chart(fig, use_container_width=True) fig_col1,fig_col2 = st.columns(2) with fig_col1: st.markdown('### first chart') fig1 = px.density_heatmap(data_frame = df,y='age',x='marital') st.write(fig1) with fig_col2: st.markdown('### first chart') fig1 = px.histogram(data_frame = df,x='age') st.write(fig2) st.dataframe(df) st.markdown('### charts') def main(): st.header("welcome") if __name__ == "__main__": main()