Spaces:
Sleeping
Sleeping
File size: 805 Bytes
0ab3c67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import joblib
import numpy as np
import pandas as pd
import json
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# Load dataset
data = pd.read_csv("diabetes.csv")
X = data.drop('Outcome', axis=1)
y = data['Outcome']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluate
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
# Save model
joblib.dump(model, 'diabetes_model.joblib')
# Save accuracy
with open("metrics.json", "w") as f:
json.dump({"accuracy": accuracy * 100}, f)
print(f"Model Accuracy: {accuracy * 100}%")
|