Spaces:
Sleeping
Sleeping
import streamlit as st | |
import joblib | |
import pandas as pd | |
# Load trained model | |
model = joblib.load("diabetes-ml/diabetes_model.joblib") | |
# Streamlit UI | |
st.title("Diabetes Prediction App") | |
st.write("Enter patient data to predict diabetes") | |
# Input fields | |
st.header("welcome to the app") | |
pregnancies = st.number_input("Pregnancies", min_value=0, max_value=20) | |
glucose = st.number_input("Glucose Level", min_value=0, max_value=200) | |
blood_pressure = st.number_input("Blood Pressure", min_value=0, max_value=200) | |
skin_thickness = st.number_input("Skin Thickness", min_value=0, max_value=100) | |
insulin = st.number_input("Insulin Level", min_value=0, max_value=900) | |
bmi = st.number_input("BMI", min_value=0.0, max_value=60.0) | |
dpf = st.number_input("Diabetes Pedigree Function", min_value=0.0, max_value=3.0) | |
age = st.number_input("Age", min_value=0, max_value=120) | |
# Prediction | |
if st.button("Predict"): | |
features = [[pregnancies, glucose, blood_pressure, skin_thickness, insulin, bmi, dpf, age]] | |
prediction = model.predict(features)[0] | |
result = "Diabetic" if prediction == 1 else "Not Diabetic" | |
st.write(f"Prediction: **{result}**") | |