Spaces:
Sleeping
Sleeping
File size: 1,829 Bytes
0144081 c178054 0144081 c178054 0144081 c178054 0144081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch.nn.functional as F
# Load trained model & tokenizer
@st.cache_resource
def load_model():
model = AutoModelForSequenceClassification.from_pretrained("models/sentiment_model")
tokenizer = AutoTokenizer.from_pretrained("models/sentiment_model")
return model, tokenizer
model, tokenizer = load_model()
# Streamlit UI
st.set_page_config(page_title="Sentiment Analyzer", page_icon="π¬", layout="wide")
st.title("π¬ Sentiment Analyzer")
st.write("Analyze the sentiment of any text! Enter a sentence below and get an instant analysis.")
user_input = st.text_area("Enter your text:", "")
if st.button("Analyze Sentiment"):
if user_input:
with st.spinner("Analyzing..."):
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
sentiment_index = torch.argmax(probs).item()
confidence = round(probs[0][sentiment_index].item() * 100, 2)
# Map index to label
labels = ["Negative", "Neutral", "Positive"] # Adjust this based on your training labels
sentiment = labels[sentiment_index]
# Display result
st.subheader("π Result")
if sentiment == "Positive":
st.success(f"π **Positive Sentiment** ({confidence}%)")
elif sentiment == "Negative":
st.error(f"π **Negative Sentiment** ({confidence}%)")
else:
st.warning(f"π **Neutral Sentiment** ({confidence}%)")
else:
st.warning("β οΈ Please enter some text.")
st.markdown("---")
st.markdown("π Built with Streamlit | Model: DistilBERT (Fine-tuned)")
|