Spaces:
Sleeping
Sleeping
Commit
·
2b3de4f
1
Parent(s):
81a820f
adding scripts'
Browse files- scripts/evaluate.py +24 -0
- scripts/test.py +16 -0
- scripts/train.py +43 -0
scripts/evaluate.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sklearn.metrics import accuracy_score, f1_score
|
4 |
+
|
5 |
+
# Load dataset
|
6 |
+
dataset = load_dataset("allocine")["test"]
|
7 |
+
|
8 |
+
# Load model
|
9 |
+
classifier = pipeline("text-classification", model="./models")
|
10 |
+
|
11 |
+
# Get predictions
|
12 |
+
predictions = [classifier(text["review"])[0]["label"] for text in dataset]
|
13 |
+
labels = dataset["label"]
|
14 |
+
|
15 |
+
# Convert labels
|
16 |
+
label_map = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2}
|
17 |
+
predictions = [label_map[p] for p in predictions]
|
18 |
+
|
19 |
+
# Compute metrics
|
20 |
+
accuracy = accuracy_score(labels, predictions)
|
21 |
+
f1 = f1_score(labels, predictions, average="weighted")
|
22 |
+
|
23 |
+
print(f"Accuracy: {accuracy:.4f}")
|
24 |
+
print(f"F1-score: {f1:.4f}")
|
scripts/test.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import unittest
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
classifier = pipeline("text-classification", model="./models")
|
5 |
+
|
6 |
+
class TestModel(unittest.TestCase):
|
7 |
+
def test_positive_sentiment(self):
|
8 |
+
result = classifier("I love this product!")[0]
|
9 |
+
self.assertIn(result["label"], ["LABEL_0", "LABEL_1", "LABEL_2"])
|
10 |
+
|
11 |
+
def test_negative_sentiment(self):
|
12 |
+
result = classifier("This is terrible, I hate it.")[0]
|
13 |
+
self.assertIn(result["label"], ["LABEL_0", "LABEL_1", "LABEL_2"])
|
14 |
+
|
15 |
+
if __name__ == "__main__":
|
16 |
+
unittest.main()
|
scripts/train.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Load dataset (French dataset example: Allociné)
|
5 |
+
dataset = load_dataset("allocine")
|
6 |
+
|
7 |
+
# Load tokenizer
|
8 |
+
model_name = "distilbert-base-multilingual-cased"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Tokenize data
|
12 |
+
def tokenize(batch):
|
13 |
+
return tokenizer(batch["review"], padding="max_length", truncation=True)
|
14 |
+
|
15 |
+
dataset = dataset.map(tokenize, batched=True)
|
16 |
+
|
17 |
+
# Load model
|
18 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
|
19 |
+
|
20 |
+
# Training arguments
|
21 |
+
training_args = TrainingArguments(
|
22 |
+
output_dir="./models",
|
23 |
+
per_device_train_batch_size=8,
|
24 |
+
num_train_epochs=3,
|
25 |
+
evaluation_strategy="epoch",
|
26 |
+
save_steps=1000,
|
27 |
+
load_best_model_at_end=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
# Trainer setup
|
31 |
+
trainer = Trainer(
|
32 |
+
model=model,
|
33 |
+
args=training_args,
|
34 |
+
train_dataset=dataset["train"],
|
35 |
+
eval_dataset=dataset["test"],
|
36 |
+
)
|
37 |
+
|
38 |
+
# Train model
|
39 |
+
trainer.train()
|
40 |
+
|
41 |
+
# Save model
|
42 |
+
model.save_pretrained("./models")
|
43 |
+
tokenizer.save_pretrained("./models")
|