Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,63 @@
|
|
| 1 |
-
|
| 2 |
-
import streamlit as st
|
| 3 |
import yfinance as yf
|
| 4 |
-
|
| 5 |
from prophet import Prophet
|
| 6 |
from prophet.plot import plot_plotly
|
| 7 |
-
from datetime import date
|
| 8 |
from plotly import graph_objs as go
|
|
|
|
| 9 |
|
| 10 |
START = "2015-01-01"
|
| 11 |
TODAY = date.today().strftime("%Y-%m-%d")
|
| 12 |
|
| 13 |
-
st.title(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
stocks = ("AAPL", "GOOG", "MSFT", "GME")
|
| 16 |
-
selected_stocks = st.selectbox("Select dataset for prediction", stocks)
|
| 17 |
-
slider_year = st.slider("Years of Prediction:", 1, 10)
|
| 18 |
-
period = slider_year * 365
|
| 19 |
|
| 20 |
-
@st.cache
|
| 21 |
def load_data(ticker):
|
| 22 |
data = yf.download(ticker, START, TODAY)
|
| 23 |
data.reset_index(inplace=True)
|
| 24 |
return data
|
| 25 |
|
| 26 |
-
data_load_state = st.text("Loading Data")
|
| 27 |
-
data = load_data(selected_stocks) ## call the function specified abpve
|
| 28 |
-
data_load_state.text("Data has been loaded")
|
| 29 |
|
| 30 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
st.write(data.tail())
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
fig = go.Figure()
|
| 35 |
-
fig.add_trace(go.Scatter(x=data[
|
| 36 |
-
fig.add_trace(go.Scatter(x=data[
|
| 37 |
-
fig.layout.update(title_text
|
| 38 |
st.plotly_chart(fig)
|
| 39 |
|
| 40 |
-
raw_Plot()
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
forecast = model.predict(futureModel)
|
| 49 |
|
| 50 |
-
st.
|
| 51 |
-
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
| 2 |
import yfinance as yf
|
|
|
|
| 3 |
from prophet import Prophet
|
| 4 |
from prophet.plot import plot_plotly
|
|
|
|
| 5 |
from plotly import graph_objs as go
|
| 6 |
+
from datetime import date
|
| 7 |
|
| 8 |
START = "2015-01-01"
|
| 9 |
TODAY = date.today().strftime("%Y-%m-%d")
|
| 10 |
|
| 11 |
+
st.title('Stock Forecast App')
|
| 12 |
+
stocks = ('GOOG', 'AAPL', 'MSFT', 'GME')
|
| 13 |
+
selected_stock = st.selectbox('Select a stock price for prediction', stocks)
|
| 14 |
+
n_years = st.slider('Years of prediction', 1, 4)
|
| 15 |
+
periods = n_years * 365
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
@st.cache_data # Use st.cache_data instead of st.cache
|
| 19 |
def load_data(ticker):
|
| 20 |
data = yf.download(ticker, START, TODAY)
|
| 21 |
data.reset_index(inplace=True)
|
| 22 |
return data
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
data_load_state = st.text('Loading data...')
|
| 26 |
+
data = load_data(selected_stock)
|
| 27 |
+
data_load_state.text('Loading data... done!')
|
| 28 |
+
|
| 29 |
+
st.subheader('Raw data')
|
| 30 |
st.write(data.tail())
|
| 31 |
|
| 32 |
+
|
| 33 |
+
# Plot raw data
|
| 34 |
+
def plot_raw_data():
|
| 35 |
fig = go.Figure()
|
| 36 |
+
fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name="stock_open"))
|
| 37 |
+
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="stock_close"))
|
| 38 |
+
fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True)
|
| 39 |
st.plotly_chart(fig)
|
| 40 |
|
|
|
|
| 41 |
|
| 42 |
+
plot_raw_data()
|
| 43 |
+
|
| 44 |
+
# Predict forecast with Prophet.
|
| 45 |
+
df_train = data[['Date', 'Close']]
|
| 46 |
+
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
|
| 47 |
+
|
| 48 |
+
m = Prophet()
|
| 49 |
+
m.fit(df_train)
|
| 50 |
+
future = m.make_future_dataframe(periods=periods)
|
| 51 |
+
forecast = m.predict(future)
|
| 52 |
+
|
| 53 |
+
# Show and plot forecast
|
| 54 |
+
st.subheader('Forecast data')
|
| 55 |
+
st.write(forecast.tail())
|
| 56 |
|
| 57 |
+
st.subheader('Forecast plot for {} years'.format(n_years))
|
| 58 |
+
fig1 = plot_plotly(m, forecast)
|
| 59 |
+
st.plotly_chart(fig1)
|
|
|
|
| 60 |
|
| 61 |
+
st.write("Forecast components")
|
| 62 |
+
fig2 = m.plot_components(forecast)
|
| 63 |
+
st.write(fig2)
|