File size: 1,151 Bytes
89e5f67
 
 
1774943
89e5f67
 
 
7627841
 
1774943
 
 
 
 
 
 
 
 
 
87b7915
 
89e5f67
87b7915
eac3300
89e5f67
 
 
 
 
87b7915
89e5f67
 
87b7915
de55df6
87b7915
7627841
89e5f67
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# AUTOGENERATED! DO NOT EDIT! File to edit: ../app.ipynb.

# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'get_y', 'classify_image']

# %% ../app.ipynb 1
from fastai.vision.all import *
import gradio as gr

# %% ../app.ipynb 3
# Copied from https://n90l9ahmyv.clg07azjl.paperspacegradient.com/lab/tree/bear_multicat.ipynb

# from parent_label
def get_y(o):
    parent_name = Path(o).parent.name
    if parent_name in bear_types:
        return [parent_name]
    return []

# %% ../app.ipynb 4
learn = load_learner('bear_multicat.pkl') #'export.pkl')

# %% ../app.ipynb 6
categories = ('black', 'grizzly', 'teddy')

def classify_image(im):
    pred, idx, probs = learn.predict(im)
    return dict(zip(categories, map(float, probs)))

# %% ../app.ipynb 8
image = gr.Image(width=192, height=192)
label = gr.Label()
examples = ['images/grizzly.jpg', 'images/black.jpg', 'images/teddy.jpg',
            'images/grizzly_black.jpg',
            'images/text.png', 'images/einstein.png', 'images/dunno.jpg']

intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)