Spaces:
Sleeping
Sleeping
File size: 1,151 Bytes
89e5f67 1774943 89e5f67 7627841 1774943 87b7915 89e5f67 87b7915 eac3300 89e5f67 87b7915 89e5f67 87b7915 de55df6 87b7915 7627841 89e5f67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../app.ipynb.
# %% auto 0
__all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'get_y', 'classify_image']
# %% ../app.ipynb 1
from fastai.vision.all import *
import gradio as gr
# %% ../app.ipynb 3
# Copied from https://n90l9ahmyv.clg07azjl.paperspacegradient.com/lab/tree/bear_multicat.ipynb
# from parent_label
def get_y(o):
parent_name = Path(o).parent.name
if parent_name in bear_types:
return [parent_name]
return []
# %% ../app.ipynb 4
learn = load_learner('bear_multicat.pkl') #'export.pkl')
# %% ../app.ipynb 6
categories = ('black', 'grizzly', 'teddy')
def classify_image(im):
pred, idx, probs = learn.predict(im)
return dict(zip(categories, map(float, probs)))
# %% ../app.ipynb 8
image = gr.Image(width=192, height=192)
label = gr.Label()
examples = ['images/grizzly.jpg', 'images/black.jpg', 'images/teddy.jpg',
'images/grizzly_black.jpg',
'images/text.png', 'images/einstein.png', 'images/dunno.jpg']
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch(inline=False)
|