to deploy
Browse files
1.jpg
ADDED
![]() |
2.jpg
ADDED
![]() |
3.jpg
ADDED
![]() |
4.jpeg
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import transformers
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
transformers.logging.disable_default_handler()
|
11 |
+
processor = DonutProcessor.from_pretrained("daquarti/donut-base-sroie")
|
12 |
+
model = VisionEncoderDecoderModel.from_pretrained("daquarti/donut-base-sroie")
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(device)
|
15 |
+
|
16 |
+
def load_image (f):
|
17 |
+
with Image.open(f) as img:
|
18 |
+
a = img.load()
|
19 |
+
return img.convert('RGB')
|
20 |
+
|
21 |
+
def pred (a):
|
22 |
+
#imagen_path = imagen
|
23 |
+
#a = load_image (imagen_path)
|
24 |
+
pixel_values = processor(a, return_tensors="pt").pixel_values
|
25 |
+
task_prompt = "<s>"
|
26 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
27 |
+
|
28 |
+
outputs = model.generate(
|
29 |
+
pixel_values.to(device),
|
30 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
31 |
+
max_length=model.decoder.config.max_position_embeddings,
|
32 |
+
early_stopping=True,
|
33 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
34 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
35 |
+
use_cache=True,
|
36 |
+
num_beams=1,
|
37 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
38 |
+
return_dict_in_generate=True,
|
39 |
+
)
|
40 |
+
prediction = processor.batch_decode(outputs.sequences)[0]
|
41 |
+
prediction = processor.token2json(prediction)
|
42 |
+
return str (prediction)
|
43 |
+
|
44 |
+
examples = ['1.jpg', '2.jpg']
|
45 |
+
demo = gr.Interface(fn=pred, inputs="image", outputs= "text", examples= examples)
|
46 |
+
|
47 |
+
|
48 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers @ git+https://github.com/huggingface/transformers.git@9ccea7acb1a75dc18d47906dc9baed883ccfeb19
|
2 |
+
datasets==2.6.1
|