Update app.py
Browse files
app.py
CHANGED
|
@@ -11,6 +11,10 @@ from interpret import InterpretationPrompt
|
|
| 11 |
MAX_PROMPT_TOKENS = 30
|
| 12 |
|
| 13 |
## info
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
model_info = {
|
| 15 |
'LLAMA2-7B': dict(model_path='meta-llama/Llama-2-7b-chat-hf', device_map='cpu', token=os.environ['hf_token'],
|
| 16 |
original_prompt_template='<s>[INST] {prompt} [/INST]',
|
|
@@ -161,6 +165,8 @@ css = '''
|
|
| 161 |
|
| 162 |
# '''
|
| 163 |
|
|
|
|
|
|
|
| 164 |
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
| 165 |
global_state = gr.State([])
|
| 166 |
with gr.Row():
|
|
@@ -190,21 +196,21 @@ with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
|
| 190 |
with gr.Group('Interpretation'):
|
| 191 |
interpretation_prompt = gr.Text(suggested_interpretation_prompts[0], label='Interpretation Prompt')
|
| 192 |
|
| 193 |
-
with gr.
|
| 194 |
gr.Markdown('''
|
| 195 |
Here are some examples of prompts we can analyze their internal representations
|
| 196 |
''')
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
with gr.Group():
|
| 207 |
-
original_prompt_raw
|
| 208 |
original_prompt_btn = gr.Button('Compute', variant='primary')
|
| 209 |
|
| 210 |
tokens_container = []
|
|
|
|
| 11 |
MAX_PROMPT_TOKENS = 30
|
| 12 |
|
| 13 |
## info
|
| 14 |
+
dataset_info = [{'name': 'Commonsense', 'hf_repo': 'tau/commonsense_qa', 'text_col': 'question'}]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
model_info = {
|
| 19 |
'LLAMA2-7B': dict(model_path='meta-llama/Llama-2-7b-chat-hf', device_map='cpu', token=os.environ['hf_token'],
|
| 20 |
original_prompt_template='<s>[INST] {prompt} [/INST]',
|
|
|
|
| 165 |
|
| 166 |
# '''
|
| 167 |
|
| 168 |
+
original_prompt_raw = gr.Textbox(value='Should I eat cake or vegetables?', container=True, label='Original Prompt')
|
| 169 |
+
|
| 170 |
with gr.Blocks(theme=gr.themes.Default(), css=css) as demo:
|
| 171 |
global_state = gr.State([])
|
| 172 |
with gr.Row():
|
|
|
|
| 196 |
with gr.Group('Interpretation'):
|
| 197 |
interpretation_prompt = gr.Text(suggested_interpretation_prompts[0], label='Interpretation Prompt')
|
| 198 |
|
| 199 |
+
with gr.Group():
|
| 200 |
gr.Markdown('''
|
| 201 |
Here are some examples of prompts we can analyze their internal representations
|
| 202 |
''')
|
| 203 |
+
|
| 204 |
+
for info in dataset_info:
|
| 205 |
+
with gr.Tab(info['name']):
|
| 206 |
+
num_examples = 10
|
| 207 |
+
dataset = load_dataset(info['hf_repo'], split='train', streaming=True)
|
| 208 |
+
dataset = dataset.shuffle(buffer_size=2000).take(num_examples)
|
| 209 |
+
dataset = [[row[info['text_col']]] for row in dataset]
|
| 210 |
+
gr.Examples(dataset, [original_prompt_raw])
|
| 211 |
+
|
| 212 |
with gr.Group():
|
| 213 |
+
original_prompt_raw.render()
|
| 214 |
original_prompt_btn = gr.Button('Compute', variant='primary')
|
| 215 |
|
| 216 |
tokens_container = []
|