Update app.py
Browse files
app.py
CHANGED
@@ -3,57 +3,95 @@ from transformers import AutoModel, AutoProcessor
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import json
|
|
|
|
|
6 |
|
7 |
-
# Load
|
|
|
|
|
|
|
8 |
def load_model():
|
9 |
-
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base"
|
10 |
model = AutoModel.from_pretrained("microsoft/layoutlmv3-base")
|
11 |
return processor, model
|
12 |
|
13 |
processor, model = load_model()
|
14 |
|
15 |
-
#
|
16 |
def process_document(image):
|
17 |
try:
|
18 |
-
# Ensure image is a PIL Image (Gradio provides it as PIL with type="pil")
|
19 |
if not isinstance(image, Image.Image):
|
20 |
return None, "Error: Invalid image format. Please upload a valid image."
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
with torch.no_grad():
|
27 |
outputs = model(**encoding)
|
28 |
-
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
# Placeholder result; customize based on your task (e.g., token classification, text extraction)
|
33 |
result = {
|
34 |
"status": "success",
|
35 |
-
"
|
36 |
-
"
|
|
|
37 |
}
|
38 |
-
|
39 |
return image, json.dumps(result, indent=2)
|
40 |
-
|
41 |
except Exception as e:
|
42 |
return image, f"Error processing document: {str(e)}"
|
43 |
|
44 |
-
# Gradio
|
45 |
-
with gr.Blocks(title="
|
46 |
-
gr.Markdown("# Document Analysis with LayoutLMv3")
|
47 |
-
gr.Markdown("Upload a document image (PNG, JPG, JPEG)
|
48 |
-
|
49 |
with gr.Row():
|
50 |
with gr.Column():
|
51 |
-
image_input = gr.Image(type="pil", label="Upload Document Image")
|
52 |
-
submit_button = gr.Button("Process Document")
|
53 |
with gr.Column():
|
54 |
-
image_output = gr.Image(label="Uploaded Image")
|
55 |
-
text_output = gr.Textbox(label="Analysis Results")
|
56 |
-
|
57 |
submit_button.click(
|
58 |
fn=process_document,
|
59 |
inputs=image_input,
|
@@ -61,12 +99,11 @@ with gr.Blocks(title="Document Analysis with LayoutLMv3") as demo:
|
|
61 |
)
|
62 |
|
63 |
gr.Markdown("""
|
64 |
-
|
65 |
-
1. Upload a document image
|
66 |
-
2. Click "Process Document"
|
67 |
-
3.
|
68 |
-
4. This is a basic demo; customize the output processing for specific tasks (e.g., text extraction, layout analysis).
|
69 |
""")
|
70 |
|
71 |
-
# Launch
|
72 |
demo.launch()
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
import json
|
6 |
+
import easyocr
|
7 |
+
import numpy as np
|
8 |
|
9 |
+
# Load EasyOCR Reader
|
10 |
+
reader = easyocr.Reader(['en'])
|
11 |
+
|
12 |
+
# Load LayoutLMv3 model and processor
|
13 |
def load_model():
|
14 |
+
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base")
|
15 |
model = AutoModel.from_pretrained("microsoft/layoutlmv3-base")
|
16 |
return processor, model
|
17 |
|
18 |
processor, model = load_model()
|
19 |
|
20 |
+
# OCR + Preprocessing for LayoutLMv3
|
21 |
def process_document(image):
|
22 |
try:
|
|
|
23 |
if not isinstance(image, Image.Image):
|
24 |
return None, "Error: Invalid image format. Please upload a valid image."
|
25 |
+
|
26 |
+
# OCR: Get text and boxes from EasyOCR
|
27 |
+
ocr_results = reader.readtext(np.array(image))
|
28 |
+
|
29 |
+
if not ocr_results:
|
30 |
+
return image, "No text detected."
|
31 |
+
|
32 |
+
words = []
|
33 |
+
boxes = []
|
34 |
+
for (bbox, text, confidence) in ocr_results:
|
35 |
+
if text.strip() == "":
|
36 |
+
continue
|
37 |
+
words.append(text)
|
38 |
+
# Convert bounding box to [x0, y0, x1, y1] format (top-left, bottom-right)
|
39 |
+
x_coords = [point[0] for point in bbox]
|
40 |
+
y_coords = [point[1] for point in bbox]
|
41 |
+
x0, y0, x1, y1 = int(min(x_coords)), int(min(y_coords)), int(max(x_coords)), int(max(y_coords))
|
42 |
+
boxes.append([x0, y0, x1, y1])
|
43 |
+
|
44 |
+
# Normalize boxes to LayoutLMv3 expected format (1000x1000)
|
45 |
+
width, height = image.size
|
46 |
+
normalized_boxes = []
|
47 |
+
for box in boxes:
|
48 |
+
x0, y0, x1, y1 = box
|
49 |
+
normalized_box = [
|
50 |
+
int(1000 * x0 / width),
|
51 |
+
int(1000 * y0 / height),
|
52 |
+
int(1000 * x1 / width),
|
53 |
+
int(1000 * y1 / height)
|
54 |
+
]
|
55 |
+
normalized_boxes.append(normalized_box)
|
56 |
+
|
57 |
+
# Encode inputs for LayoutLMv3
|
58 |
+
encoding = processor(image,
|
59 |
+
words=words,
|
60 |
+
boxes=normalized_boxes,
|
61 |
+
return_tensors="pt",
|
62 |
+
truncation=True,
|
63 |
+
padding="max_length")
|
64 |
+
|
65 |
with torch.no_grad():
|
66 |
outputs = model(**encoding)
|
67 |
+
|
68 |
+
# Use last hidden state or logits based on model
|
69 |
+
hidden = outputs.last_hidden_state
|
|
|
|
|
70 |
result = {
|
71 |
"status": "success",
|
72 |
+
"words": words,
|
73 |
+
"model_output_shape": str(hidden.shape),
|
74 |
+
"message": "Document processed with EasyOCR and LayoutLMv3."
|
75 |
}
|
76 |
+
|
77 |
return image, json.dumps(result, indent=2)
|
78 |
+
|
79 |
except Exception as e:
|
80 |
return image, f"Error processing document: {str(e)}"
|
81 |
|
82 |
+
# Gradio UI
|
83 |
+
with gr.Blocks(title="LayoutLMv3 with EasyOCR") as demo:
|
84 |
+
gr.Markdown("# π§Ύ Document Layout Analysis with LayoutLMv3 + EasyOCR")
|
85 |
+
gr.Markdown("Upload a document image (PNG, JPG, JPEG). Weβll extract the layout and text using EasyOCR.")
|
86 |
+
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
+
image_input = gr.Image(type="pil", label="π Upload Document Image")
|
90 |
+
submit_button = gr.Button("π Process Document")
|
91 |
with gr.Column():
|
92 |
+
image_output = gr.Image(label="π· Uploaded Image")
|
93 |
+
text_output = gr.Textbox(label="π Analysis Results", lines=20)
|
94 |
+
|
95 |
submit_button.click(
|
96 |
fn=process_document,
|
97 |
inputs=image_input,
|
|
|
99 |
)
|
100 |
|
101 |
gr.Markdown("""
|
102 |
+
## π Instructions
|
103 |
+
1. Upload a document image.
|
104 |
+
2. Click "Process Document".
|
105 |
+
3. See the text extracted and model output.
|
|
|
106 |
""")
|
107 |
|
108 |
+
# Launch
|
109 |
demo.launch()
|