Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,72 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoModel, AutoProcessor
|
3 |
-
from PIL import Image
|
4 |
-
import torch
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
with gr.
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
### Instructions
|
74 |
-
1. Upload a document image (PNG, JPG, or JPEG).
|
75 |
-
2. Click "Process Document" to analyze the image.
|
76 |
-
3. View the results in the output section.
|
77 |
-
4. This is a basic demo; customize the output processing for specific tasks (e.g., text extraction, layout analysis).
|
78 |
-
""")
|
79 |
-
|
80 |
-
# Launch the Gradio app
|
81 |
-
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Load the LayoutLMv3 model and processor
|
8 |
+
def load_model():
|
9 |
+
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
|
10 |
+
model = AutoModel.from_pretrained("microsoft/layoutlmv3-base")
|
11 |
+
return processor, model
|
12 |
+
|
13 |
+
processor, model = load_model()
|
14 |
+
|
15 |
+
# Function to process the uploaded image
|
16 |
+
def process_document(image):
|
17 |
+
try:
|
18 |
+
# Ensure image is a PIL Image (Gradio provides it as PIL with type="pil")
|
19 |
+
if not isinstance(image, Image.Image):
|
20 |
+
return None, "Error: Invalid image format. Please upload a valid image."
|
21 |
+
|
22 |
+
# Preprocess the image with the processor
|
23 |
+
encoding = processor(image, return_tensors="pt")
|
24 |
+
|
25 |
+
# Run the model
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = model(**encoding)
|
28 |
+
|
29 |
+
# Extract logits or embeddings (modify based on your task)
|
30 |
+
logits = outputs.logits if hasattr(outputs, 'logits') else outputs.last_hidden_state
|
31 |
+
|
32 |
+
# Placeholder result; customize based on your task (e.g., token classification, text extraction)
|
33 |
+
result = {
|
34 |
+
"status": "success",
|
35 |
+
"model_output_shape": str(logits.shape),
|
36 |
+
"message": "Document processed successfully. Customize this section for specific outputs."
|
37 |
+
}
|
38 |
+
|
39 |
+
return image, json.dumps(result, indent=2)
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
return image, f"Error processing document: {str(e)}"
|
43 |
+
|
44 |
+
# Gradio Interface
|
45 |
+
with gr.Blocks(title="Document Analysis with LayoutLMv3") as demo:
|
46 |
+
gr.Markdown("# Document Analysis with LayoutLMv3")
|
47 |
+
gr.Markdown("Upload a document image (PNG, JPG, JPEG) to analyze its layout and extract text.")
|
48 |
+
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
image_input = gr.Image(type="pil", label="Upload Document Image")
|
52 |
+
submit_button = gr.Button("Process Document")
|
53 |
+
with gr.Column():
|
54 |
+
image_output = gr.Image(label="Uploaded Image")
|
55 |
+
text_output = gr.Textbox(label="Analysis Results")
|
56 |
+
|
57 |
+
submit_button.click(
|
58 |
+
fn=process_document,
|
59 |
+
inputs=image_input,
|
60 |
+
outputs=[image_output, text_output]
|
61 |
+
)
|
62 |
+
|
63 |
+
gr.Markdown("""
|
64 |
+
### Instructions
|
65 |
+
1. Upload a document image (PNG, JPG, or JPEG).
|
66 |
+
2. Click "Process Document" to analyze the image.
|
67 |
+
3. View the results in the output section.
|
68 |
+
4. This is a basic demo; customize the output processing for specific tasks (e.g., text extraction, layout analysis).
|
69 |
+
""")
|
70 |
+
|
71 |
+
# Launch the Gradio app
|
72 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|