Spaces:
Sleeping
Sleeping
File size: 3,196 Bytes
b60b6c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
 ## AI Inference on a video stream This notebook is a simple example of how to use DeGirum PySDK to do AI inference on a video stream. This script works with the following inference options: 1. Run inference on DeGirum Cloud Platform; 2. Run inference on DeGirum AI Server deployed on a localhost or on some computer in your LAN or VPN; 3. Run inference on DeGirum ORCA accelerator directly installed on your computer. To try different options, you need to specify the appropriate `hw_location` option. When running this notebook locally, you need to specify your cloud API access token in the [env.ini](../../env.ini) file, located in the same directory as this notebook. When running this notebook in Google Colab, the cloud API access token should be stored in a user secret named `DEGIRUM_CLOUD_TOKEN`. You can change `video_source` to index of a local webcamera, or URL of an RTSP stream, or URL of a YouTube video, or path to another video file. -------------------------------------------------------------------------------- # make sure degirum-tools package is installed !pip show degirum-tools || pip install degirum-tools -------------------------------------------------------------------------------- #### Specify where you want to run your inferences, model zoo url, model name and video source -------------------------------------------------------------------------------- # hw_location: where you want to run inference # "@cloud" to use DeGirum cloud # "@local" to run on local machine # IP address for AI server inference # model_zoo_url: url/path for model zoo # cloud_zoo_url: valid for @cloud, @local, and ai server inference options # '': ai server serving models from local folder # path to json file: single model zoo in case of @local inference # model_name: name of the model for running AI inference # video_source: video source for inference # camera index for local camera # URL of RTSP stream # URL of YouTube Video # path to video file (mp4 etc) hw_location = "@cloud" model_zoo_url = "degirum/public" model_name = "yolo_v5s_coco--512x512_quant_n2x_orca1_1" video_source = "https://raw.githubusercontent.com/DeGirum/PySDKExamples/main/images/example_video.mp4" -------------------------------------------------------------------------------- #### The rest of the cells below should run without any modifications -------------------------------------------------------------------------------- import degirum as dg, degirum_tools # load object detection AI model model = dg.load_model( model_name=model_name, inference_host_address=hw_location, zoo_url=model_zoo_url, token=degirum_tools.get_token(), ) # run AI inference on video stream inference_results = degirum_tools.predict_stream(model, video_source) # display inference results # Press 'x' or 'q' to stop with degirum_tools.Display("AI Camera") as display: for inference_result in inference_results: display.show(inference_result) -------------------------------------------------------------------------------- |