Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import plotly.express as px
|
3 |
+
import pandas as pd
|
4 |
+
import logging
|
5 |
+
import whisper
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from torch.nn.functional import silu
|
12 |
+
from torch.nn.functional import softplus
|
13 |
+
from einops import rearrange, repeat, einsum
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
from torch import Tensor
|
16 |
+
from einops import rearrange
|
17 |
+
|
18 |
+
from model import Mamba
|
19 |
+
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
|
22 |
+
def plotly_plot_text(text):
|
23 |
+
data = pd.DataFrame()
|
24 |
+
data['Emotion'] = ['π anger', 'π€’ disgust', 'π¨ fear', 'π joy/happiness', 'π neutral', 'π’ sadness', 'π² surprise/enthusiasm']
|
25 |
+
data['Probability'] = model.predict_proba([text])[0].tolist()
|
26 |
+
p = px.bar(data, x='Emotion', y='Probability', color="Probability")
|
27 |
+
return (
|
28 |
+
p,
|
29 |
+
f"π£οΈ Transcription:\n{text}",
|
30 |
+
f"## π Dominant Emotion: {data['Emotion'].values[np.argmax(np.array(data['Probability']))]}"
|
31 |
+
)
|
32 |
+
|
33 |
+
def transcribe_audio(audio_path):
|
34 |
+
whisper_model = whisper.load_model("base")
|
35 |
+
try:
|
36 |
+
result = whisper_model.transcribe(audio_path, fp16=False)
|
37 |
+
return result.get('text', '')
|
38 |
+
except Exception as e:
|
39 |
+
logging.error(f"Transcription failed: {e}")
|
40 |
+
return ""
|
41 |
+
|
42 |
+
def plotly_plot_audio(audio_path):
|
43 |
+
data = pd.DataFrame()
|
44 |
+
data['Emotion'] = ['π anger', 'π€’ disgust', 'π¨ fear', 'π joy/happiness', 'π neutral', 'π’ sadness', 'π² surprise/enthusiasm']
|
45 |
+
try:
|
46 |
+
text = transcribe_audio(audio_path)
|
47 |
+
data['Probability'] = model.predict_proba([text])[0].tolist() if text.strip() else [0.0] * data.shape[0]
|
48 |
+
p = px.bar(data, x='Emotion', y='Probability', color="Probability")
|
49 |
+
return (
|
50 |
+
p,
|
51 |
+
f"π£οΈ Transcription:\n{text}",
|
52 |
+
f"## π Dominant Emotion: {data['Emotion'].values[np.argmax(np.array(data['Probability']))]}"
|
53 |
+
)
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
logging.error(f"Processing failed: {e}")
|
57 |
+
data['Probability'] = [0] * data.shape[0]
|
58 |
+
p = px.bar(data, x='Emotion', y='Probability', color="Probability")
|
59 |
+
return (
|
60 |
+
p,
|
61 |
+
"β Error processing audio",
|
62 |
+
"β οΈ Processing Error"
|
63 |
+
)
|
64 |
+
|
65 |
+
def create_demo():
|
66 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Emotion Detection") as demo:
|
67 |
+
gr.Markdown("# Text-based bilingual emotion recognition")
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
audio_input = gr.Audio(
|
72 |
+
sources=["upload", "microphone"],
|
73 |
+
type="filepath",
|
74 |
+
label="Record or Upload Audio",
|
75 |
+
format="wav",
|
76 |
+
interactive=True
|
77 |
+
)
|
78 |
+
with gr.Column():
|
79 |
+
text_input = gr.Text(label="Write Text")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
top_emotion = gr.Markdown("## π Dominant Emotion: Waiting for input ...",
|
83 |
+
elem_classes="dominant-emotion")
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
text_plot = gr.Plot(label="Text Analysis")
|
87 |
+
|
88 |
+
transcription = gr.Textbox(
|
89 |
+
label="π Transcription Results",
|
90 |
+
placeholder="Transcribed text will appear here...",
|
91 |
+
lines=3,
|
92 |
+
max_lines=6
|
93 |
+
)
|
94 |
+
|
95 |
+
if text_input is not None:
|
96 |
+
text_input.change(fn=plotly_plot_text, inputs=text_input, outputs=[text_plot, transcription, top_emotion])
|
97 |
+
elif audio_input is not None:
|
98 |
+
audio_input.change(fn=plotly_plot_audio, inputs=audio_input, outputs=[text_plot, transcription, top_emotion])
|
99 |
+
return demo
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
model = Mamba(num_layers = 2, d_input = 1024, d_model = 512, num_classes=7, model_name='jina', pooling=None).to(device)
|
104 |
+
checkpoint = torch.load("Mamba_jina_checkpoint.pth"), map_location=torch.device('cpu')
|
105 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
106 |
+
demo = create_demo()
|
107 |
+
demo.launch()
|