Update app.py
Browse files
app.py
CHANGED
|
@@ -2,20 +2,21 @@ import gradio as gr
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
-
from retriever.
|
| 6 |
|
| 7 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
| 8 |
|
| 9 |
@spaces.GPU(duration=300)
|
| 10 |
def generate_response(query):
|
| 11 |
-
#
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 13 |
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
model_name,
|
| 15 |
torch_dtype=torch.float16,
|
|
|
|
| 16 |
trust_remote_code=True,
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
# 1. ๊ฒ์
|
| 20 |
top_k = 5
|
| 21 |
retrieved_docs = search_documents(query, top_k=top_k)
|
|
@@ -31,7 +32,7 @@ def generate_response(query):
|
|
| 31 |
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
|
| 32 |
|
| 33 |
# 3. ๋ต๋ณ ์์ฑ
|
| 34 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
| 35 |
outputs = model.generate(
|
| 36 |
**inputs,
|
| 37 |
max_new_tokens=512,
|
|
@@ -41,20 +42,7 @@ def generate_response(query):
|
|
| 41 |
do_sample=True,
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# 4. ๊ฒฐ๊ณผ ๋ฐํ
|
| 45 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 46 |
|
| 47 |
-
# Gradio ์ฑ
|
| 48 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
| 49 |
demo.launch()
|
| 50 |
-
|
| 51 |
-
# zero = torch.Tensor([0]).cuda()
|
| 52 |
-
# print(zero.device) # <-- 'cpu' ๐ค
|
| 53 |
-
|
| 54 |
-
# @spaces.GPU
|
| 55 |
-
# def greet(n):
|
| 56 |
-
# print(zero.device) # <-- 'cuda:0' ๐ค
|
| 57 |
-
# return f"Hello {zero + n} Tensor"
|
| 58 |
-
|
| 59 |
-
# demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
| 60 |
-
# demo.launch()
|
|
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
from retriever.vectordb import search_documents # ๐ง RAG ๊ฒ์๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
|
| 6 |
|
| 7 |
model_name = "dasomaru/gemma-3-4bit-it-demo"
|
| 8 |
|
| 9 |
@spaces.GPU(duration=300)
|
| 10 |
def generate_response(query):
|
| 11 |
+
# ๐ generate_response ํจ์ ์์์ ๋งค๋ฒ ๋ก๋
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 13 |
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
model_name,
|
| 15 |
torch_dtype=torch.float16,
|
| 16 |
+
device_map="auto", # โ
์ค์: ์๋์ผ๋ก GPU ํ ๋น
|
| 17 |
trust_remote_code=True,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
# 1. ๊ฒ์
|
| 21 |
top_k = 5
|
| 22 |
retrieved_docs = search_documents(query, top_k=top_k)
|
|
|
|
| 32 |
prompt += f"[์ง๋ฌธ]\n{query}\n\n[๋ต๋ณ]\n"
|
| 33 |
|
| 34 |
# 3. ๋ต๋ณ ์์ฑ
|
| 35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # โ
model.device
|
| 36 |
outputs = model.generate(
|
| 37 |
**inputs,
|
| 38 |
max_new_tokens=512,
|
|
|
|
| 42 |
do_sample=True,
|
| 43 |
)
|
| 44 |
|
|
|
|
| 45 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 46 |
|
|
|
|
| 47 |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
| 48 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|