Spaces:
Runtime error
Runtime error
File size: 8,454 Bytes
4858ba5 2a1d061 28623de 9a42f0f aad99a8 4858ba5 2a1d061 4858ba5 2a1d061 e2762c5 98c19b6 e2762c5 98c19b6 e2762c5 4858ba5 9a42f0f 476f578 277bf9b 9a42f0f 476f578 230c281 3e27538 230c281 9a42f0f 476f578 230c281 9a42f0f 28623de aad99a8 9a42f0f fb83515 3e27538 9a42f0f fb83515 9a42f0f 98c19b6 9a42f0f e44c00b 4858ba5 28623de 277bf9b 28623de e2762c5 4858ba5 277bf9b c74f0d5 aad99a8 4858ba5 9a42f0f c74f0d5 bf6bb3c 4858ba5 9a42f0f 4858ba5 2a1d061 4858ba5 183f524 4858ba5 b2bfa4a 4858ba5 b2bfa4a 4858ba5 9a42f0f 4858ba5 9a42f0f 4858ba5 9a42f0f c74f0d5 4858ba5 c74f0d5 2a1d061 4858ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import duckdb
import gradio as gr
import matplotlib.pyplot as plt
from transformers import HfEngine, ReactCodeAgent
from transformers.agents import Tool
from langsmith import traceable
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
model_loaded = False
for model in models:
try:
llm_engine = HfEngine(model=model)
info = llm_engine.client.get_endpoint_info()
model_loaded = True
break
except Exception as e:
print(f"Error for model {model}: {e}")
continue
if not model_loaded:
gr.Warning(f"β None of the model form {models} are available. {e}")
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(schema_name):
tables = get_tables(schema_name)
return gr.update(choices=tables)
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create, full_path
def get_visualization(question, tool, schema, table_name):
agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True,
additional_authorized_imports=['matplotlib.pyplot',
'pandas', 'plotly.express',
'seaborn'], max_iterations=10)
results = agent.run(
task= f'''
Here are the steps you should follow while writing code for Visualization:
1. You have access to the database with the `sql_engine` tool, which allows you to run DuckDB SQL queries and return results as a df.
2. Query the database using `sql_engine`, print the first 5 rows to inspect the data.
3. Select the most appropriate chart type for the data:
- Use bar charts for categorical comparisons, line charts for trends over time, scatter plots for relationships between variables, pie charts for proportions, histograms for distribution, and box plots for data spread and outliers.
4. Analyze the data and choose the best visualization type to answer the query.
5. Always include a plot in your answer.
6. Use Seaborn for the plots.
7. In the end, return a dictionary containing the final figure (`fig` key), the generated SQL (`sql` key), and the data as a dataframe (`data` key) using the `final_answer` tool, e.g. `final_answer(answer={{"fig": 'fig.png', "sql": sql, "data": data}})`.
Example:
```python
# Input query
query_description = 'Average tip amount based on the ride time length in minutes.'
# SQL Query to get ride time length and average tip amount
query = """
SELECT
EXTRACT(EPOCH FROM (tpep_dropoff_datetime - tpep_pickup_datetime)) / 60 AS ride_time_length,
AVG(tip_amount) AS avg_tip_amount
FROM
sample_data.nyc.taxi
GROUP BY
EXTRACT(EPOCH FROM (tpep_dropoff_datetime - tpep_pickup_datetime)) / 60
"""
# Execute the query using the sql_engine tool
df = sql_engine(query=query)
# Print the result to observe the data
print(df)
# Create a line plot using seaborn
import seaborn as sns
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
sns.lineplot(x="ride_time_length", y="avg_tip_amount", data=df)
# Set the title and labels
plt.title("Average Tip Amount vs Ride Time Length")
plt.xlabel("Ride Time Length (minutes)")
plt.ylabel("Average Tip Amount")
# Print the plot to observe the results
print("Plot created")
# Since we are required to return a fig, sql, and data, let's store the plot in a variable
fig = plt.gcf()
# Store the query in a variable
sql = query
# Store the dataframe in a variable
data = df
# Return the final answer
final_answer(answer={{"fig": fig, "sql": sql, "data": data}})
```
Here is the query you should generate a plot for: '{question}'.
Here is the schema: '{schema}' and here is the table name: '{table_name}
'''
)
return results
@traceable()
def query_response(input_prompt, generated_sql):
return generated_sql
class SQLExecutorTool(Tool):
name = "sql_engine"
inputs = {
"query": {
"type": "text",
"description": f"The query to perform. This should be correct DuckDB SQL.",
}
}
description = """Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result."""
output_type = "pandas.core.frame.DataFrame"
def forward(self, query: str) -> str:
output_df = conn.sql(query).df()
return output_df
tool = SQLExecutorTool()
def main(table, text_query):
# Empty Fig
fig, ax = plt.subplots()
ax.set_axis_off()
schema, table_name = get_table_schema(table)
try:
output = get_visualization(question=text_query, tool=tool, schema=schema, table_name=table_name)
fig = output.get('fig', None)
generated_sql = output.get('sql', None)
data = output.get('data', None)
input_prompt = text_query + '\n' + table_name + '\n' + schema
_ = query_response(input_prompt, generated_sql)
except Exception as e:
gr.Warning(f"β Unable to generate the visualization. {e}")
return fig, generated_sql, data
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>DataViz Agent</strong>
<br>
<span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...")
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Plot"):
result_plot = gr.Plot()
with gr.Tab("SQL"):
generated_sql = gr.Textbox(lines=TAB_LINES, label="Generated SQL", value="", interactive=False,
autoscroll=False)
with gr.Tab("Data"):
data = gr.Dataframe(label="Data", interactive=False)
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot, generated_sql, data])
if __name__ == "__main__":
demo.launch(debug=True) |