Spaces:
Runtime error
Runtime error
import os | |
import duckdb | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
from transformers import HfEngine, ReactCodeAgent | |
from transformers.agents import Tool | |
# Height of the Tabs Text Area | |
TAB_LINES = 8 | |
# Load Token | |
md_token = os.getenv('MD_TOKEN') | |
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN') | |
print('Connecting to DB...') | |
# Connect to DB | |
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True) | |
llm_engine = HfEngine(model="meta-llama/Meta-Llama-3-70B-Instruct") | |
def get_schemas(): | |
schemas = conn.execute(""" | |
SELECT DISTINCT schema_name | |
FROM information_schema.schemata | |
WHERE schema_name NOT IN ('information_schema', 'pg_catalog') | |
""").fetchall() | |
return [item[0] for item in schemas] | |
# Get Tables | |
def get_tables(schema_name): | |
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall() | |
return [table[0] for table in tables] | |
# Update Tables | |
def update_tables(schema_name): | |
tables = get_tables(schema_name) | |
return gr.update(choices=tables) | |
# Get Schema | |
def get_table_schema(table): | |
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df() | |
ddl_create = result.iloc[0,0] | |
parent_database = result.iloc[0,1] | |
schema_name = result.iloc[0,2] | |
full_path = f"{parent_database}.{schema_name}.{table}" | |
if schema_name != "main": | |
old_path = f"{schema_name}.{table}" | |
else: | |
old_path = table | |
ddl_create = ddl_create.replace(old_path, full_path) | |
return ddl_create, full_path | |
def get_visualization(question, tool): | |
agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True, | |
additional_authorized_imports=['matplotlib.pyplot', | |
'pandas', 'plotly.express', | |
'seaborn'], max_iterations=10) | |
fig = agent.run( | |
task=f''' | |
Here are the steps you should follow while writing code for Visualization: | |
1. Select the most effective visualization type for the data and purpose. | |
2. Ensure clear and appropriate labels, colors, and design elements, keeping visual elements legible and uncluttered. | |
3. Follow best practices, avoiding unnecessary visual distractions (chartjunk). | |
4. Ensure the code is error-free, with correct fields, transformations, and aesthetics. | |
5. Use descriptive and accurate x and y axis labels that reflect the data. | |
6. Ensure units of measurement are clearly indicated on axes (e.g., %, $, cm). | |
7. Ensure that categorical data is plotted on one axis and numerical data on the other, with appropriate labels that clearly represent the data being visualized. | |
8. When plotting categorical data, arrange categories in a meaningful order (e.g., by size, time, or frequency) rather than randomly. | |
9. Ensure that the categorical data are plotted on the x-axis, and the frequencies (numerical data) are plotted on the y-axis. | |
10. Use seaborn | |
11. In the end you have to return a final fig using the `final_answer` tool. | |
Here is the task: | |
task: {question} | |
''', | |
) | |
return fig | |
class SQLExecutorTool(Tool): | |
name = "sql_engine" | |
inputs = { | |
"query": { | |
"type": "text", | |
"description": f"The query to perform. This should be correct DuckDB SQL.", | |
} | |
} | |
output_type = "pandas.core.frame.DataFrame" | |
def forward(self, query: str) -> str: | |
with duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True) as con: | |
output_df = conn.sql(query).df() | |
return output_df | |
tool = SQLExecutorTool() | |
def main(table, text_query): | |
# Empty Fig | |
fig, ax = plt.subplots() | |
ax.set_axis_off() | |
schema, _ = get_table_schema(table) | |
tool.description = f"""Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result. | |
The table schema is as follows: \n{schema}""" | |
try: | |
fig = get_visualization(question=text_query, tool=tool) | |
except Exception as e: | |
gr.Warning(f"β Unable to generate the visualization. {e}") | |
return fig | |
custom_css = """ | |
.gradio-container { | |
background-color: #f0f4f8; | |
} | |
.logo { | |
max-width: 200px; | |
margin: 20px auto; | |
display: block; | |
} | |
.gr-button { | |
background-color: #4a90e2 !important; | |
} | |
.gr-button:hover { | |
background-color: #3a7bc8 !important; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo: | |
gr.Image("logo.png", label=None, show_label=False, container=False, height=100) | |
gr.Markdown(""" | |
<div style='text-align: center;'> | |
<strong style='font-size: 36px;'>DataViz Agent</strong> | |
<br> | |
<span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True) | |
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None) | |
with gr.Column(scale=2): | |
query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...") | |
with gr.Row(): | |
with gr.Column(scale=7): | |
pass | |
with gr.Column(scale=1): | |
generate_query_button = gr.Button("Run Query", variant="primary") | |
with gr.Tabs(): | |
with gr.Tab("Plot"): | |
result_plot = gr.Plot() | |
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown) | |
generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |